MOS FET Relays G3VM-21GR

MOS FET Relay with Low Output Capacitance and ON Resistance (C×R = 5pF• Ω) in a 20-V Load Voltage, SOP Package.

- Output capacitance of 1 pF (typical) allows high-frequency applications.
- Leakage current of 1.0 nA max. (0.2 nA typ.) when relay is open.
- RoHS Compliant.

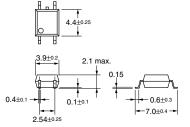
■ Application Examples

- Semiconductor inspection tools
- Measurement devices
- Broadband systems
- Data loggers

Note: The actual product is marked differently from the image shown

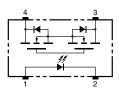
■ List of Models

Contact form	Terminals	Load voltage (peak value)	Model	Number per stick	Number per tape
SPST-NO			G3VM-21GR	100	
	terminals		G3VM-21GR(TR)		2,500

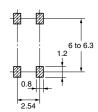

■ Dimensions

Note: All units are in millimeters unless otherwise indicated.

G3VM-21GR


Note: The actual product is marked differently from the image shown here.

Weight: 0.1 g


■ Terminal Arrangement/Internal Connections (Top View)

G3VM-21GR

■ Actual Mounting Pad Dimensions (Recommended Value, Top View)

G3VM-21GR


■ Absolute Maximum Ratings (Ta = 25°C)

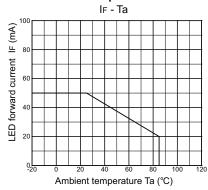
Item		Symbol	Rating	Unit	Measurement conditions	
Input	Input LED forward current		50	mA		Note:
	Repetitive peak LED forward current	I _{FP}	1	Α	100 μs pulses, 100 pps	
	LED forward current reduction rate	Δ I _F /°C	-0.5	mA/°C	$T_a \ge 25^{\circ}C$	
	LED reverse voltage	V_R	5	V		
	Connection temperature	T_j	125	°C		Ī
Output	Load voltage (AC peak/DC)	V_{OFF}	20	V		
	Continuous load current	Io	160	mA		Ī
	ON current reduction rate	∆ I _{ON} /°C	-1.6	mA/°C	$T_a \ge 25^{\circ}C$	
	Connection temperature	T_j	125	°C		Ì
	ic strength between input and See note 1.)	V _{I-O}	1,500	Vrms	AC for 1 min	
Operating temperature		T _a	-20 to +85	°C	With no icing or condensation	
Storage temperature		T_{stg}	-40 to +125	°C	With no icing or condensation	1
Soldering temperature (10 s)			260	°C	10 s	1

The dielectric strength between the input and output was checked by applying voltage between all pins as a group on the LED side and all pins as a group on the light-receiving side.

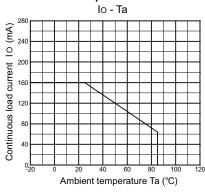
■ Electrical Characteristics (Ta = 25°C)

Item		Symbol	Mini- mum	Typical	Maxi- mum	Unit	Measurement conditions
Input	LED forward voltage	V _F	1.0	1.15	1.3	V	I _F = 10 mA
	Reverse current	I _R			10	μΑ	V _R = 5 V
	Capacity between terminals	C _T		15		pF	V = 0, f = 1 MHz
	Trigger LED forward current	I _{FT}			4	mA	I _O = 100 mA
Output	Maximum resistance with output ON	R _{ON}		5	8	Ω	I _F = 5 mA, I _O = 160 mA, t < 1 s
	Current leakage when the relay is open	I _{LEAK}		0.2	1.0	nA	$V_{OFF} = 20 \text{ V}, T_a = 50^{\circ}\text{C}$
	Capacity between terminals	C _{OFF}		1.0	2.5	pF	V = 0, f = 100 MHz, t < 1 s
Capacity between I/O terminals		C _{I-O}		0.8		pF	f = 1 MHz, V _s = 0 V
Insulation resistance		R _{I-O}	1,000			ΜΩ	$V_{I-O} = 500 \text{ VDC}, R_{oH} \le 60\%$
Turn-ON time		t _{ON}		0.025	0.5	ms	$I_F = 10 \text{ mA}, R_L = 200 \Omega,$
Turn-OFF time		t _{OFF}		0.11	0.5	ms	$V_{DD} = 20 \text{ V (See note 2.)}$

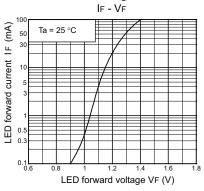
Note:

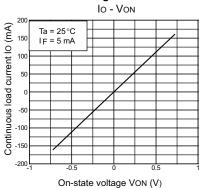

■ Recommended Operating Conditions

Use the G3VM under the following conditions so that the Relay will operate properly.

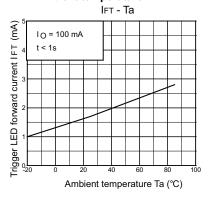

Item	Symbol	Minimum	Typical	Maximum	Unit
Load voltage (AC peak/DC)	V_{DD}			20	V
Operating LED forward current	I _F	7		30	mA
Continuous load current (AC peak/DC)	Io			160	mA
Operating temperature	T _a	25		60	°C

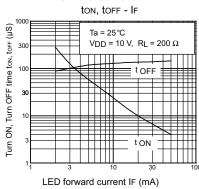
■ Engineering Data

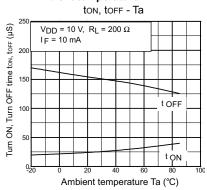

LED forward current vs. Ambient temperature

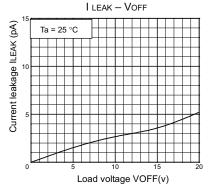

Continuous load current vs. Ambient temperature

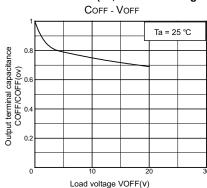

LED forward current vs. LED forward voltage


Continuous load current vs. On-state voltage


On-state resistance vs. Ambient temperature


Trigger LED forward current vs. Ambient temperature


Turn ON, Turn OFF time vs. LED forward current


Turn ON, Turn OFF time vs. Ambient temperature

Current leakage vs. Load voltage

Output terminal capacitance COFF/COFF(ov) vs. Load voltage

All sales are subject to Omron Electronic Components LLC standard terms and conditions of sale, which can be found at http://www.components.omron.com/components/web/webfiles.nsf/sales_terms.html

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.

OMRON **OMRON ELECTRONIC**

COMPONENTS LLC 55 E. Commerce Drive, Suite B Schaumburg, IL 60173

847-882-2288

Cat. No. X302-E-1

12/10

OMRON ON-LINE

Global - http://www.omron.com USA - http://www.components.omron.com

Specifications subject to change without notice Printed in USA