Α1

MOS FET Relays

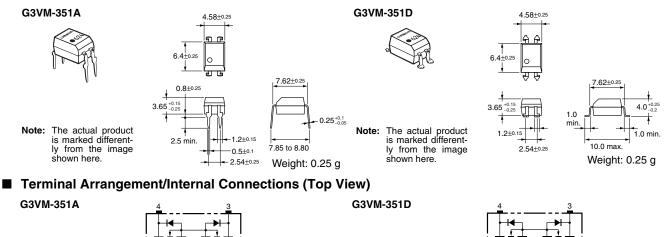
MOS FET Relay Series with 350-V Load Voltage

- Upgraded G3VM-2 Series.
- Continuous load current of 120 mA.
- Dielectric strength of 2,500 Vrms between I/O.
- Operating time of 0.3 ms (typical).
- RoHS Compliant.

Application Examples

- Measurement devices
- · Security systems
- Amusement machines

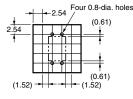
List of Models



Note: The actual product is marked differently from the image shown here.

Contact form	Terminals	Load voltage (peak value)	Model	Number per stick	Number per tape
SPST-NO	PCB terminals	350 VAC	G3VM-351A	100	
	Surface-mounting		G3VM-351D		
	terminals		G3VM-351D(TR)		1,500

Dimensions


Note: All units are in millimeters unless otherwise indicated.

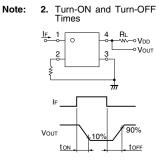
PCB Dimensions (Bottom View)

G3VM-351A

 Actual Mounting Pad Dimensions (Recommended Value, Top View)

G3VM-351D

OMRON

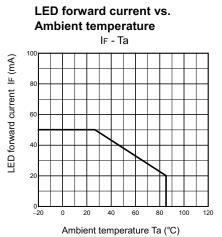

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rating	Unit	Measurement conditions]
Input	LED forward current	I _F	50	mA		Note
	Repetitive peak LED forward current	I _{FP}	1	A	100 μs pulses, 100 pps	
	LED forward current reduction rate	$\Delta I_{F}^{/\circ}C$	-0.5	mA/°C	Ta ≥ 25°C	
	LED reverse voltage	V _R	5	V		1
	Connection temperature	T _j	125	°C		1
Output	Load voltage (AC peak/DC)	V _{OFF}	350	V		1
	Continuous load current	I _o	120	mA		1
	ON current reduction rate	$\Delta I_{ON} / ^{\circ}C$	-1.2	mA/°C	Ta ≥ 25°C	1
	Connection temperature	T _j	125	°C		1
	ric strength between input and (See note 1.)	V _{I-O}	2,500	V _{rms}	AC for 1 min	
Operati	ing temperature	T _a	-40 to +85	°C	With no icing or condensation	
Storage temperature		T _{stg}	-55 to +125	°C	With no icing or condensation	1
Soldering temperature (10 s)			260	°C	10 s	1

 The dielectric strength between the input and output was checked by applying voltage between all pins as a group on the LED side and all pins as a group on the light-receiving side.

■ Electrical Characteristics (Ta = 25°C)

Item		Symbol	Mini- mum	Typical	Maxi- mum	Unit	Measurement conditions
Input	LED forward voltage	V _F	1.0	1.15	1.3	V	I _F = 10 mA
	Reverse current	I _R			10	μA	V _R = 5 V
	Capacity between terminals	CT		30		pF	V = 0, f = 1 MHz
	Trigger LED forward current	I _{FT}		1	3	mA	l _o = 120 mA
Output	Maximum resistance with output ON	R _{ON}		25	35	Ω	I _F = 5 mA, I _O = 120 mA, t < 1 s
				35	50	Ω	I _F = 5 mA, I _O = 120 mA
	Current leakage when the relay is open	I _{LEAK}		0.0015	1.0	μA	V _{OFF} = 350 V
	Capacity between terminals	C_{OFF}		30		pF	V = 0, f = 1MHz
Capacit	y between I/O terminals	C _{I-O}		0.8		pF	f = 1 MHz, V _s = 0 V
Insulation resistance		R _{I-O}	1,000			MΩ	$\begin{array}{l} V_{\text{I-O}} = 500 \ \text{VDC}, \\ R_{\text{oH}} \leq 60\% \end{array}$
Turn-ON time		t _{on}		0.3	1.0	ms	$I_F = 5 \text{ mA}, R_L = 200 \Omega,$
Turn-OFF time		t _{OFF}		0.1	1.0	ms	$V_{DD} = 20 V$ (See note 2.)


Recommended Operating Conditions

Use the G3VM under the following conditions so that the Relay will operate properly.

Item	Symbol	Minimum	Typical	Maximum	Unit
Load voltage (AC peak/DC)	V _{DD}			280	V
Operating LED forward current	I _F	5	7.5	25	mA
Continuous load current (AC peak/DC)	I _o			100	mA
Operating temperature	T _a	- 20		65	°C

OMRON

Engineering Data

Continuous load current vs.

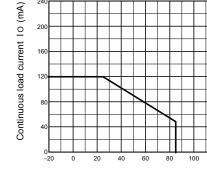
Io - Von

On-state voltage

200

100

-100

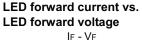

-200

30

Continuous load current IO (mA)

Ta = 25°C

 $I_F = 5 mA$

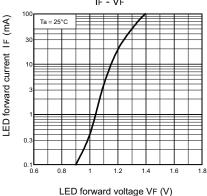


Ambient temperature Ta (°C)

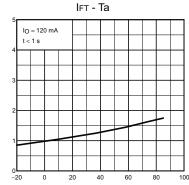
Continuous load current vs.

lo - Ta

Ambient temperature

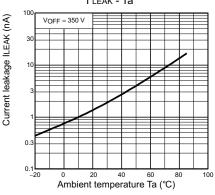

(mA)

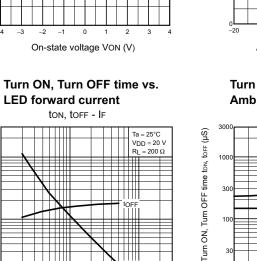
Щ

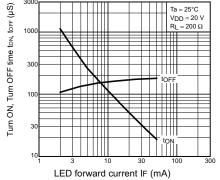

(mA)

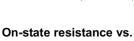
Trigger LED forward current IFT

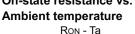
120




Trigger LED forward current vs. **Ambient temperature**




Ambient temperature Ta (°C)


Current leakage vs. **Ambient temperature** I LEAK - Ta

Ambient temperature Ta (°C)

Turn ON, Turn OFF time vs. Ambient temperature

ton, torr - Ta 1000 ton 300 100 lOF 30 Vnn = 20 V RL = 200 Ω IF = 5 mA10 -20 40 80 100 0 20 60 Ambient temperature Ta (°C)

All sales are subject to Omron Electronic Components LLC standard terms and conditions of sale, which can be found at http://www.components.omron.com/components/web/webfiles.nsf/sales_terms.html

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS. To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.

55 E. Commerce Drive, Suite B Schaumburg, IL 60173

OMRON ON-LINE

Global - http://www.omron.com USA - http://www.components.omron.com

847-882-2288

Cat. No. X302-E-1

12/10

Specifications subject to change without notice

Printed in USA