Quad 2-Input AND Gate

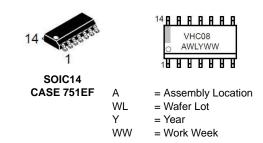
General Description

The VHC08 is an advanced high speed CMOS 2 Input AND Gate fabricated with silicon gate CMOS technology. It achieves the high–speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation.

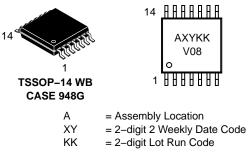
The internal circuit is composed of 4 stages including buffer output, which provide high noise immunity and stable output. An input protection circuit insures that 0 V to 7 V can be applied to the input pins without regard to the supply voltage. This device can be used to interface 5 V to 3 V systems and two supply systems such as battery backup. This circuit prevents device destruction due to mismatched supply and input voltages.

Features

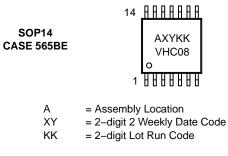
- High Speed: $t_{PD} = 4.3$ ns (Typ.) at $T_A = 25^{\circ}C$
- High Noise Immunity: $V_{NIH} = V_{NIL} = 28\% V_{CC}$ (Min.)
- Power Down Protection is Provided on All Inputs
- Low Power Dissipation: $I_{CC} = 2 \mu A$ (Max.) @ $T_A = 25^{\circ}C$
- Low Noise: V_{OLP}= 0.8 V (Max.)
- Pin and Function Compatible with 74HC08



ON Semiconductor®


www.onsemi.com

MARKING DIAGRAMS


Order Number: 74VHC08M

Order Number: 74VHC08MTCX

Order Number: 74VHC08SJX

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

74VHC08

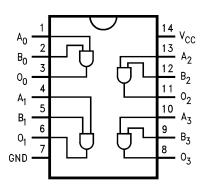


Figure 1. Connection Diagram

PIN DESCRIPTION

Pin Names	Description
A _n , B _n	Inputs
O _n	Outputs

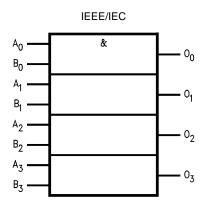


Figure 2. Logic Symbol

TRUTH TABLE

А	В	0
L	L	L
L	н	L
н	L	L
Н	Н	Н

ORDERING INFORMATION

Part Number	Package Number	Package	Packing Method [†]
74VHC08M	74VHC08M M14A		55 / Tube
74VHC08SJ	74VHC08SJ M14D		2000 / Tape & Reel
74VHC08MTC	MTC14	TSSOP-14 WB (Pb-Free)	2500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	–0.5 V to +7.0 V
V _{IN}	DC Input Voltage	–0.5 V to +7.0 V
V _{OUT}	DC Output Voltage	–0.5 V to V _{CC} + 0.5 V
I _{IK}	Input Diode Current	–20 mA
I _{OK}	Output Diode Current	±20 mA
lout	DC Output Current	±25 mA
I _{CC}	DC V _{CC} / GND Current	±50 mA
T _{STG}	Storage Temperature	–65°C to +150°C
ΤL	Lead Temperature (Soldering, 10 seconds)	260°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS (Note 1)

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	2.0 V to +5.5 V
V _{IN}	Input Voltage	0 V to +5.5 V
V _{OUT}	Output Voltage	0 V to V _{CC}
T _{OPR}	Operating Temperature	–40°C to +85°C
t _r , t _f	Input Rise and Fall Time, $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ $V_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}$	0 ns/V ~ 100 ns/V 0 ns/V ~ 20 ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. 1. Unused inputs must be held HIGH or LOW. They may not float.

DC ELECTRICAL CHARACTERISTICS

			Conditions			T _A = 25°(C	$T_{A} = -40^{\circ}$	C to +85°C	
Symbol	Parameter	V _{CC} (V)			Min	Тур	Max	Min	Max	Units
	HIGH Level Input	2.0			1.50			1.50		V
	Voltage	3.0–5.5			0.7 x V _{CC}			0.7 x V _{CC}		
VIL	LOW Level Input	2.0					0.50		0.50	V
	Voltage	3.0–5.5					0.3 x V _{CC}		0.3 x V _{CC}	
V _{OH}	HIGH Level Output	2.0		I _{OH} = -50 µА	1.9	2.0		1.9		V
	Voltage	3.0	or V _{IL}		2.9	3.0		2.9		
		4.5			4.4	4.5		4.4		
		3.0		I _{OH} =-4 mA	2.58			2.48		
		4.5		I _{OH} =-8 mA	3.94			3.80		
V _{OL}	_OW Level Output	2.0	$V_{IN} = V_{IH}$	I _{OL} = 50 μA		0.0	0.1		0.1	V
	Voltage	3.0	or V _{IL}			0.0	0.1		0.1	
		4.5				0.0	0.1		0.1	
		3.0		I _{OL} =4 mA			0.36		0.44	
		4.5		I _{OL} =8 mA			0.36		0.44	
I _{IN}	Input Leakage Current	0–5.5	$V_{IN} = 5.5$	V or GND			±0.1		±1.0	μΑ
ICC	Quiescent Supply Current	5.5	$V_{IN} = V_{IN}$	_{CC} or GND			2.0		20.0	μΑ

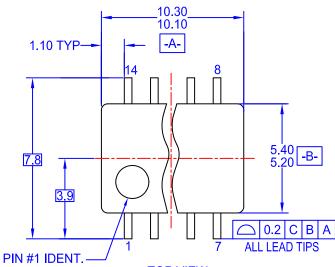
NOISE CHARACTERISTICS

				T _A = 25°C		
Symbol	Parameter	V _{CC} (V)	Conditions	Тур	Limits	Units
V _{OLP} ⁽²⁾	Quiet Output Maximum Dynamic V _{OL}	5.0	$C_L = 50 \text{ pF}$	0.3	0.8	V
V _{OLV} ⁽²⁾	Quiet Output Minimum Dynamic V _{OL}	5.0	$C_L = 50 \text{ pF}$	-0.3	-0.8	V
V _{IHD} ⁽²⁾	Minimum HIGH Level Dynamic Input Voltage	5.0	$C_L = 50 \text{ pF}$		3.5	V
V _{ILD} ⁽²⁾	Maximum LOW Level Dynamic Input Voltage	5.0	$C_L = 50 \text{ pF}$		1.5	V

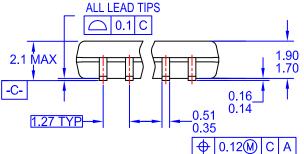
2. Parameter guaranteed by design.

74VHC08

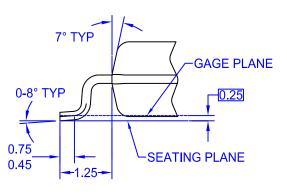
AC ELECTRICAL CHARACTERISTICS

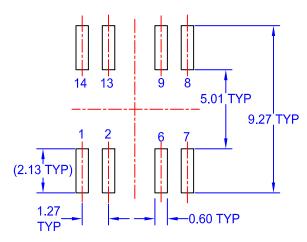

					T _A = 25°C	;	T _A = -40°C	C to +85°C	
Symbol	Parameter	V _{CC} (V)	Conditions	Min	Тур	Max	Min	Max	Units
t _{PHL} , t _{PLH}	Propagation Delay	3.3 ± 0.3	$C_L = 15 \text{ pF}$		6.2	8.8	1.0	10.5	ns
			C _L = 50 pF		8.7	12.3	1.0	14.0	
		5.0 ± 0.5	$C_L = 15 \text{ pF}$		4.3	5.9	1.0	7.0	ns
			C _L = 50 pF		5.8	7.9	1.0	9.0	
C _{IN}	Input Capacitance		V _{CC} = Open		4	10		10	pF
C _{PD}	Power Dissipation Capacitance		(Note 3)		18				pF

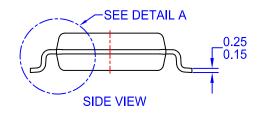
3. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC} (opr.) = $C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC} / 4$ (per gate).



SOP14 CASE 565BE ISSUE O


DATE 31 DEC 2016

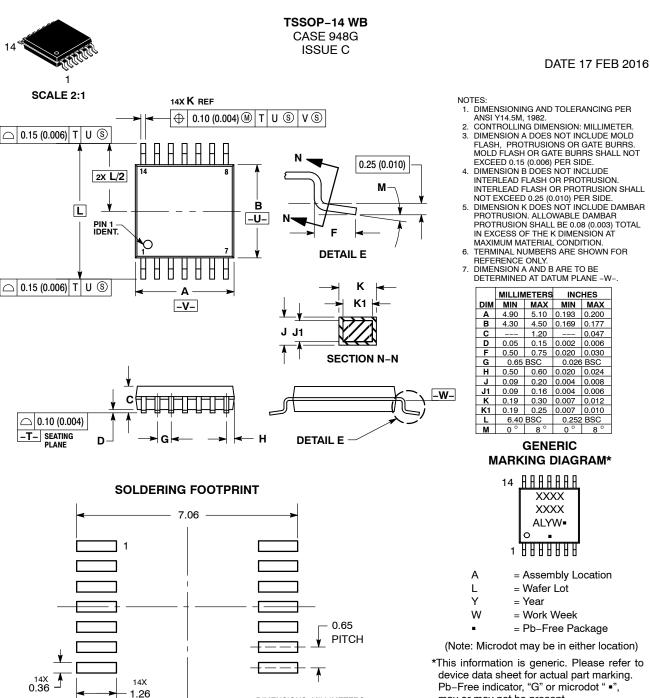

TOP VIEW



LAND PATTERN RECOMMENDATION

NOTES:

- A. CONFORMS TO EIAJ EDR-7320 REGISTRATION, ESTABLISHED IN DECEMBER, 1998.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.


DOCUMENT NUMBER:	98AON13762G	AON13762G Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	SOP14		PAGE 1 OF 1				
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or cidental damages. ON Semiconductor does not convey any license under	or guarantee regarding circuit, and specifically				

SOIC14 CASE 751EF **ISSUE O** DATE 30 SEP 2016 8.75 8.50 Α 0.65 7.62 14 8 14 8 В 4.00 6.00 5.60 3.80 Ħ 1.70 7 **PIN #1** 1,27 7 0.51 **IDENT.** 1.270.35 (0.33) \oplus 0.25 (M) С В Α LAND PATTERN RECOMMENDATION TOP VIEW 1.75 MAX 0.25 С 0.19 0.10 С 1.50 0.25 0.10 1.25 SIDE VIEW **FRONT VIEW** NOTES: A. CONFORMS TO JEDEC MS-012, VARIATION AB, ISSUE C **B. ALL DIMENSIONS ARE IN MILLIMETERS** 0.50 0.25 × 45° C. DIMENSIONS DO NOT INCLUDE MOLD FLASH OR BURRS LAND PATTERN STANDARD: R0.10 GAGE D. SOIC127P600X145-14M PLANE R0.10 E. CONFORMS TO ASME Y14.5M, 2009 0.36 8° 0° 0.90 0.50 SEATING PLANE (1.04)DETAIL A SCALE 16 : 1 Electronic versions are uncontrolled except when accessed directly from the Document Repository. DOCUMENT NUMBER: 98AON13739G Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** SOIC14 PAGE 1 OF 1

ON Semiconductor and (1) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

may or may not be present.

DOCUMENT NUMBER:	98ASH70246A	Electronic versions are uncontrolled except when accessed directly from the Document Reposite Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	TSSOP-14 WB		PAGE 1 OF 1				
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or icidental damages. ON Semiconductor does not convey any license under	or guarantee regarding r circuit, and specifically				

DIMENSIONS: MILLIMETERS

© Semiconductor Components Industries, LLC, 2019

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative