

February 2010

FDS8958A_F085

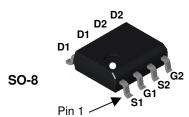
Dual N & P-Channel PowerTrench® MOSFET

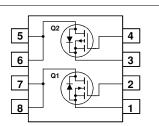
General Description

These dual N- and P-Channel enhancement mode power field effect transistors are produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimize on-state ressitance and yet maintain superior switching performance.

These devices are well suited for low voltage and battery powered applications where low in-line power loss and fast switching are required.

Features


- Q1: N-Channel 7.0A, 30V $R_{DS(on)} = 0.028\Omega @ V_{GS} = 10V$ $R_{DS(on)} = 0.040\Omega$ @ $V_{GS} = 4.5V$
- Q2: P-Channel


 $R_{DS(on)} = 0.052\Omega @ V_{GS} = -10V$ -5A, -30V $R_{DS(on)} = 0.080\Omega @ V_{GS} = -4.5V$

Fast switching speed

High power and handling capability in a widely used surface mount package

- Qualified to AEC Q101
- **RoHS** Compliant

Absolute Maximum Ratings T_A = 25 °C unless otherwise noted

Symbol	Parameter			Q1	Q2	Units
V _{DSS}	Drain-Source Voltage			30	30	V
V _{GSS}	Gate-Source Voltage			±20	±20	V
I _D	Drain Current - Continuous (Note 1a)		7	-5		
		- Pulsed		20	-20	А
PD	Power Diss	ipation for Dual Operation	2	2		
	Power Dissipation for Single Operation		(Note 1a)	1.6	1.6	W
			(Note 1c)	0.9	0.9	
E _{AS}	Single Pulse Avalanche Energy (Note 3)			54	13	mJ
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to	°C	
Therma	I Charac	teristics				
R _{0JA}	Thermal Resistance, Junction-to-Ambient		ent (Note 1a)	78		°C/W
R _{eJC}	Thermal Resistance, Junction-to-Case		(Note 1)	40		°C/W
Packag	e Markin	g and Ordering In	formation			
Dovice	Varking	Device	Roal Siza	Tana	width	Quantity

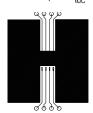
	Device Marking Device		Reel Size	Tape width	Quantity	
_	FDS8958A	FDS8958A_F085	13"	12mm	2500 units	
©2010 Fairchild Semiconductor Corporation			1	v	www.fairchildsemi.com	

©2010 Fairchild Semiconductor Corporation FDS8958A F085 Rev. A

	Test Conditions	Туре	Min	Тур	Max	Units
acteristics	·			•	•	
Drain-Source Breakdown Voltage	$ \begin{array}{ll} V_{GS} = 0 \ V, & I_D = 250 \ \mu A \\ V_{GS} = 0 \ V, & I_D = -250 \ \mu A \end{array} $	Q1 Q2	30 -30			V
Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu A$, Referenced to 25°C	Q1 Q2		25 -23		mV/°C
Zero Gate Voltage Drain Current	$V_{DS} = 24 V$, $V_{GS} = 0 V$	Q1 Q2			1 -1	μΑ
		All			100	nA
Gate-Body Leakage, Reverse	$V_{GS} = -20 \text{ V}, \qquad V_{DS} = 0 \text{ V}$	All			-100	nA
acteristics (Note 2)						-
-	$V_{DS} = V_{GS}$, $I_D = -250 \ \mu A$	Q1 Q2	1 -1	1.9 -1.7	3 -3	V
Temperature Coefficient	$I_D = -250 \ \mu A$, Referenced to 25°C	Q1 Q2		4.5		mV/°C
Static Drain-Source On-Resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 7 \text{ A}, \text{ T}_{J} = 125^{\circ}\text{C}$	Q1		19 27 24	28 42 40	mΩ
	$V_{GS} = -10 \text{ V}, \qquad I_D = -5 \text{ A}$ $V_{GS} = -10 \text{ V}, I_D = -5 \text{ A}, T_J = 125^{\circ}\text{C}$	Q2		42 57 65	52 78 80	
On-State Drain Current	$V_{GS} = 10 V,$ $V_{DS} = 5 V$ $V_{GS} = -10 V,$ $V_{DS} = -5 V$	Q1 Q2	20 -20			A
Forward Transconductance		Q1 Q2		25 10		S
Characteristics						
Input Capacitance	Q1 V _{DS} = 15 V, V _{GS} = 0 V, f = 1.0 MHz	Q1 Q2		575 528		pF
Output Capacitance	Q2	Q1 Q2		145 132		pF
Reverse Transfer Capacitance	$V_{DS} = -15 \text{ V}, V_{GS} = 0 \text{ V}, t = 1.0 \text{ MHz}$	Q1 Q2		65 70		pF
Gate Resistance	$V_{GS} = 15 \text{ mV}, \qquad f = 1.0 \text{ MHz}$	Q1 Q2		2.1 6.0		Ω
	Temperature Coefficient Zero Gate Voltage Drain Current Gate-Body Leakage, Forward Gate-Body Leakage, Reverse acteristics (Note 2) Gate Threshold Voltage Gate Threshold Voltage Temperature Coefficient Static Drain-Source Dn-Resistance Dn-State Drain Current Forward Transconductance Characteristics nput Capacitance Dutput Capacitance Reverse Transfer Capacitance	Temperature CoefficientID= -250 μ Å, Referenced to 25°CZero Gate Voltage Drain Current $V_{DS} = 24$ V, $V_{GS} = 0$ VQate-Body Leakage, Forward $V_{GS} = 20$ V, $V_{DS} = 0$ VGate-Body Leakage, Reverse $V_{GS} = -20$ V, $V_{DS} = 0$ VGate-Body Leakage, Reverse $V_{GS} = -20$ V, $V_{DS} = 0$ VGate-Body Leakage, Reverse $V_{GS} = -20$ V, $V_{DS} = 0$ VGate-Body Leakage, Reverse $V_{GS} = -20$ V, $V_{DS} = 0$ VGate-Body Leakage, Reverse $V_{GS} = -20$ V, $V_{DS} = 0$ VGate-Threshold Voltage $V_{DS} = V_{GS}$, $I_D = 250 \mu$ AGate Threshold Voltage $V_{DS} = V_{GS}$, $I_D = -250 \mu$ AGate Threshold Voltage $I_D = 250 \mu$ A, Referenced to 25°CFemperature Coefficient $I_D = -250 \mu$ A, Referenced to 25°CStatic Drain-Source $V_{GS} = 10$ V, $I_D = 7$ A, $T_J = 125°C$ $V_{GS} = 10$ V, $I_D = 7$ A, $T_J = 125°C$ $V_{GS} = -10$ V, $I_D = -5$ A, $V_{GS} = -10$ V, $I_D = -5$ ADn-State Drain Current $V_{GS} = 10$ V, $V_{DS} = 5$ V $V_{DS} = -10$ V, $V_{DS} = 5$ V, $I_D = 7$ A $V_{DS} = -5$ V, $I_D = -5$ A T Characteristicsnput Capacitance Q_{2} $V_{DS} = -15$ V, $V_{GS} = 0$ V, f = 1.0 MHz Q_2 $V_{DS} = -15$ V, $V_{GS} = 0$ V, f = 1.0 MHz	Temperature CoefficientID= -250 μ Å, Referenced to 25°CQ2Zero Gate Voltage Drain CurrentVDS= 24 V, VGSVGS= 0 VQ1QurrentVDS= -24 V, VGS0 VQ2Q2Gate-Body Leakage, ForwardVGS= 20 V, VDS0 VAllGate-Body Leakage, ReverseVGS= -250 μ AQ1Qate Threshold VoltageVDSVGS= -250 μ AQ1Gate Threshold VoltageID= 250 μ A, Referenced to 25°CQ1Gate Threshold VoltageID= -250 μ A, Referenced to 25°CQ1Iemperature CoefficientID= -250 μ A, Referenced to 25°CQ2Static Drain-SourceVGS= 10 V, ID= 7 AQ1Dn-ResistanceVGS= 10 V, ID= 7 A, TJ= 125°CVGS= -10 V, ID= -5 A, TJ= 125°CVGS= -4 ADn-State Drain CurrentVGS= 10 V, VDS= 5 VQ2Forward TransconductanceVDS= 5 V, ID= 7 AQ1VDS= -5 V, ID= -5 AQ2Q2CharacteristicsQ1VDS= 5 V, ID= -5 AQ2Output CapacitanceQ1VDS= 15 V, VGS= 0 V, f = 1.0 MHzQ1Q2Q2NDS= 15 V, VGS= 0 V, f = 1.0 MHzQ1Q2Q2NDS= 15 V, VGS= 0 V, f = 1.0 MHzQ1Q2Q2NDS= 15 V, VGS= 0 V, f = 1.0 MHzQ1Q2Q2NDS= 15 V,	Temperature CoefficientIb = -250 µÅ, Referenced to 25°CQ2Zero Gate Voltage Drain Current $V_{DS} = 24$ V, $V_{GS} = 0$ VQ1Qurrent $V_{DS} = -24$ V, $V_{GS} = 0$ VQ2Gate-Body Leakage, Forward $V_{GS} = 20$ V, $V_{DS} = 0$ VAllGate-Body Leakage, Reverse $V_{GS} = -20$ V, $V_{DS} = 0$ VAllGate-Body Leakage, Reverse $V_{GS} = -20$ V, $V_{DS} = 0$ VAllGate-Body Leakage, Reverse $V_{GS} = -20$ V, $V_{DS} = 0$ VAllGate-Body Leakage, Reverse $V_{GS} = -20$ V, $V_{DS} = 0$ VAllGate-Body Leakage, Reverse $V_{GS} = -250$ µAQ11Gate-Body Leakage, Reverse $V_{GS} = -250$ µAQ11Gate-Body Leakage, Reverse $V_{DS} = V_{GS}$, $I_D = -250$ µAQ11Gate-Body Leakage, Reverse $V_{DS} = V_{GS}$, $I_D = -250$ µAQ11Characteristics $V_{DS} = V_{GS}$, $I_D = -250$ µAQ11Gate Threshold Voltage $I_D = 250$ µA, Referenced to 25° CQ11I_D = -250 µA, Referenced to 25° CQ222Static Drain-Source $V_{GS} = 10$ V, $I_D = 7$ A, $I_J = 125^{\circ}$ CQ2 $V_{GS} = -10$ V, $I_D = -5$ AQ22-20On-State Drain Current $V_{GS} = 10$ V, $V_{DS} = 5$ VQ120 $V_{GS} = -10$ V, $V_{DS} = 5$ V, $I_D = 7$ AQ1Q2-20Forward Transconductance $V_{DS} = 5$ V, $I_D = 7$ AQ1Q2 $V_{DS} = -5$ V, $I_D = -5$ AQ2-20Forward Transconductance<	Temperature Coefficient Ib = -250 µA, Referenced to 25° C Q2 -23 Zero Gate Voltage Drain VDS = 24 V, VGS = 0 V Q1 Q2 Gate-Body Leakage, Forward VGS = 20 V, VDS = 0 V All Gate-Body Leakage, Forward VGS = 20 V, VDS = 0 V All Gate-Body Leakage, Reverse VGS = -20 V, VDS = 0 V All Gate-Body Leakage, Reverse VGS = -20 V, VDS = 0 V All Gate-Body Leakage, Reverse VGS = -20 V, VDS = 0 V All Gate-Body Leakage, Reverse VGS = -20 V, VDS = 0 V All Gate-Body Leakage, Reverse VGS = -20 V, VDS = 0 V All Gate-Body Leakage, Reverse VGS = -20 V, VDS = 0 V All Gate-Body Leakage, Reverse VGS = -20 V, VDS = 0 V All Gate-Body Leakage, Reverse VGS = -20 V, VDS = 0 V All Gate-Body Leakage VDS = -250 µA Q1 1 1.9 Gate-Body Leakage VDS = 0 V, Referenced to 25°C Q1 4.5 State Drain-Source <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

FDS8958A_F085 Rev. A

www.fairchildsemi.com


2

Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units
Switchir	ng Characteristics (Note	2)					
t _{d(on)}	Turn-On Delay Time	Q1	Q1		8	16	ns
		$V_{DD} = 15 \text{ V}, \text{ I}_{D} = 1 \text{ A},$	Q2		7	14	
t _r	Turn-On Rise Time	$V_{GS} = 10V, R_{GEN} = 6 \Omega$	Q1 Q2		5 13	10 24	ns
+	Turn-Off Delay Time	02	Q2 Q1		23	37	ns
t _{d(off)}	Tum-On Delay Time	$V_{DD} = -15 \text{ V}, \text{ I}_{D} = -1 \text{ A},$	Q1 Q2		14	25	115
t _f	Turn-Off Fall Time	$V_{GS} = -10V, R_{GEN} = 6 \Omega$	Q1		3	6	ns
u.			Q2		9	17	110
Qa	Total Gate Charge	Q1	Q1		11.4	16	nC
9	6	$V_{DS} = 15 \text{ V}, I_D = 7 \text{ A}, V_{GS} = 10 \text{ V}$	Q2		9.6	13	
Q _{gs}	Gate-Source Charge		Q1		1.7		nC
	_	Q2	Q2		2.2		
Q _{gd}	Gate-Drain Charge	$V_{DS} = -15 \text{ V}, \text{ I}_{D} = -5 \text{ A}, \text{V}_{GS} = -10 \text{ V}$	Q1		2.1		nC
			Q2		1.7		
Drain-S	ource Diode Character	istics and Maximum Rating	S				
ls	Maximum Continuous Drain-S	Source Diode Forward Current	Q1			1.3	Α
-			Q2			-1.3	
ISM	Maximum Plused Drain-Source	ce Diode Forward Current (Note 2)	Q1			20	Α
			Q2			-20	
V _{SD}	Drain-Source Diode Forward	$V_{GS} = 0 V, I_S = 1.3 A$ (Note 2)	Q1		0.75	1.2	V
	Voltage	$V_{GS} = 0 V, I_S = -1.3 A$ (Note 2)	Q2		-0.88	-1.2	
t _{rr}	Diode Reverse Recovery	Q1 $f = 7 A d - (d - 100 A) us$	Q1 Q2		19 19		nS
Q _{rr}	Diode Reverse Recovery	I _F = 7 A, d _{iF} /d _t = 100 A/μs Q2	Q2 Q1		9		nC
						1	1 110

FDS8958A_F085 Dual N Ø P-Channel PowerTrench[®] MOSFET

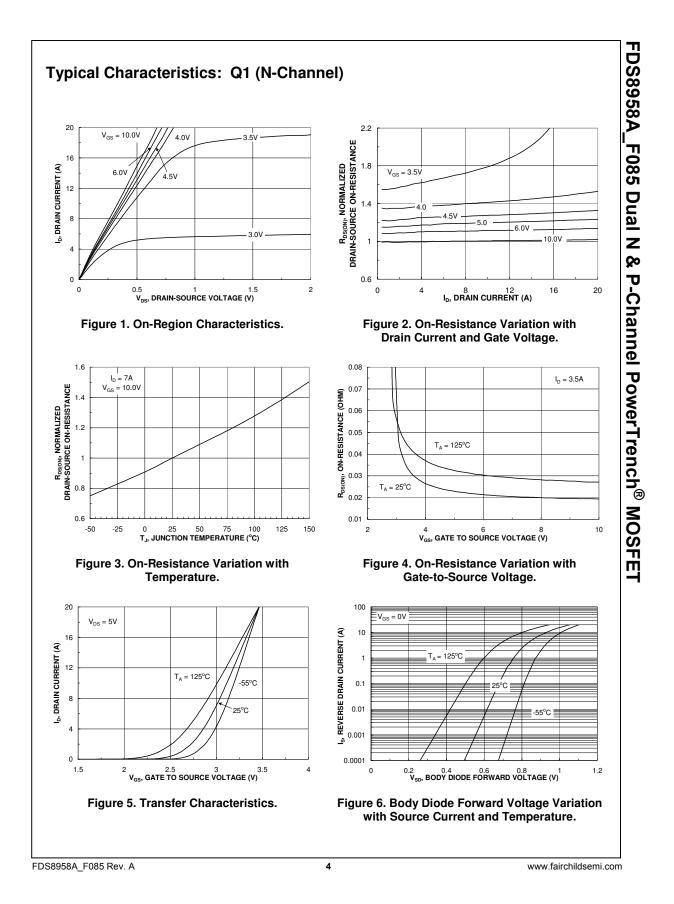
Notes:

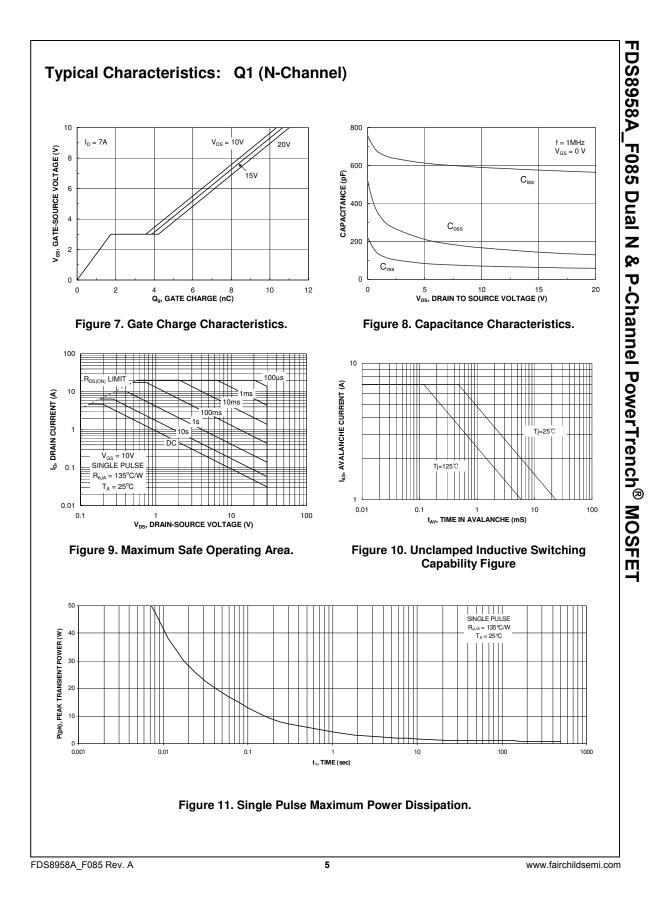
1. R_{0JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{0JC} is guaranteed by design while R_{0CA} is determined by the user's board design.

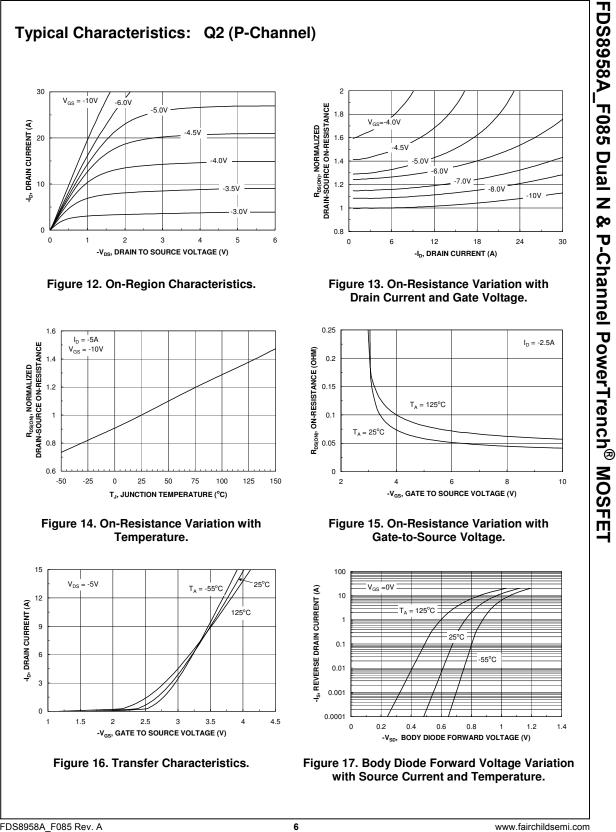
a) 78°/W when mounted on a 0.5 in² pad of 2 oz copper

b) 125°/W when mounted on a .02 in² pad of 2 oz copper

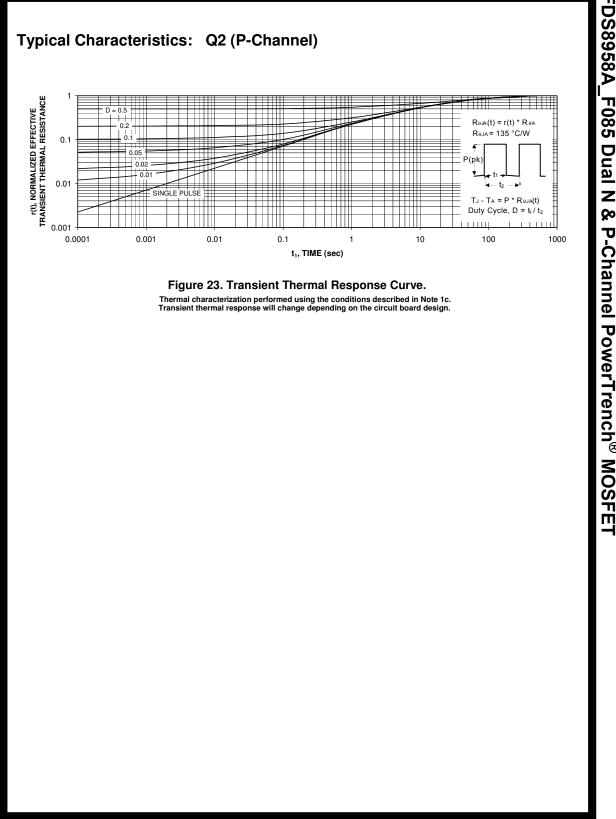
c) 135 %W when mounted on a minimum pad.


Scale 1 : 1 on letter size paper


2. Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0%


3. Starting TJ = 25 °C, L = 3mH, I_{AS} = 6A, V_{DD} = 30V, V_{GS} = 10V (Q1).

Starting TJ = 25 °C, L = 3mH, I_{AS} = 3A, V_{DD} = 30V, V_{GS} = 10V (Q2).


FDS8958A_F085 Rev. A

FDS8958A_F085 Rev. A

7

FDS8958A_F085 Rev. A

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not an aybayative list of all ayab trader

AccuPower™	FRFET [®]	PowerTrench [®]	The Power Franchis
Auto-SPM™	Global Power Resource SM	PowerXS™	the ®
Build it Now™	Green FPS™	Programmable Active Droop™	puwer
CorePLUS™	Green FPS™ e-Series™	QFET®	franchise TinyBoost™
CorePOWER™	G <i>max</i> ™	QS™	TinyBuck™
CROSSVOLT™	GTO™	Quiet Series™	TinyCalc™
CTL™	IntelliMAX™	RapidConfigure™	TinyLogic®
Current Transfer Logic™	ISOPLANAR™		TINYOPTO™
DEUXPEED®	MegaBuck™		TinyPower™
Dual Cool™_	MICROCOUPLER™	Saving our world, 1mW/W/kW at a time™	TinyPWM™
EcoSPARK [®]	MicroFET™	SignalWise™	TinyWire™
fficentMax™	MicroPak™	SmartMax™	TriFault Detect™
R	MicroPak2™	SMART START™	TRUECURRENT™
F	MillerDrive™	SPM®	μSerDes™
airchild®	MotionMax™	STEALTH™	μθειδεδ
airchild Semiconductor®	Motion-SPM™	SuperFET™	μ
ACT Quiet Series™	OptiHiT™	SuperSOT™-3	/ SerDes"
ACT®	OPTOLOGIC®	SuperSOT™-6	UHC®
AST®	OPTOPLANAR®	SuperSOT™-8	Ultra FRFET™
astvCore™	®	SupreMOS™	UniFET™
ETBench™	U	SyncFET™	VCX™
lashWriter [®] *	PDP SPM™	Sync-Lock™	VisualMax™
PS™	Power-SPM™	SYSTEM ^{®*}	XS™
-PFS™	I OWEI-OLIMI	GENERAL	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 147