

OriginIoT ORG2101 - EVK

USER GUIDE

Origin GPS.com

INDEX

1.	SCOP	E
2.	DISCI	AIMER
3.	SAFE	FY INFORMATION
4.	ESD S	ENSITIVITY
5.	CONT	ACT INFORMATION
6.	RELA	TED DOCUMENTATION
7.	REVIS	SION HISTORY
8.	ABOU	T ORIGINIOT [™]
	8.1.	MODULE DESCRIPTION
	8.2.	ARCHITECTURE
	8.3.	ORIGINIOT EVK KIT INCLUDING
	8.4.	COMPONENTS ON THE EVK
9.	GETT	ING STARTED7
	9.1.	REQUIRED EQUIPMENT
	9.2.	CONNECTING THE EVK TO PC VIA DEBUG PORT
10.	CO	NNECTING ORIGINIOT TO A SERVER 12
	10.1.	CELLULAR NETWORK PARAMETERS 12
	10.2.	ATTRIBUTING ORIGINIOT TO A SERVER
	10.3.	ENTERING CELLULAR-NETWORK PARAMETERS – GSM/LTE AUTHENTICATION COMMAND13
11.	OR	IGINIOT WEB APPLICATION 15
	11.1.	OVERVIEW15
	11.2.	USER LOG IN
	11.3.	WEB HOME TAB
	11.4 N	10DULE DETAILS TAB
	11.5 A	DDING A NEW COMMAND

	11.6 ADDING A CUSTOM COMMAND
	11.7 WIDGET PREVIEW TAB
	11.8 WIDGET CONGIFURATION
	11.9 PROFILE TAB
12.	OPERATING THE SENSORS ON THE EVK 21
	12.1 PARAMETER SETUP
	12.2 ACTIVATING THE SENSORS
	12.2 WIDGET CONFIGURATION
13.	ORDERING INFORMATION
APP	ENDIX A – PORTS AND POWER
APP	ENDIX B – FIRMWARE UPLOAD (FLASHING) FOR ORIGINIOT MODULE
APP	ENDIX C -REGISTER MAPS FOR SENSORS
APP	ENDIX D – WORK WITH ORG2101 ADD-ONS
	D.1 Using Add-on via connectors J3 and J4
	D.2 Using Add-on via FFC connector J6

FIGURE INDEX

Figure 1 –OriginIoT Architecture	6
Figure 1 – connection of ORG2101 antennas and SIM card	8
Figure 2 – mating ORG2101 to EVK correctly	9
Figure 3 – powering up EVK and ORG2101	
Figure 3a – Serial port in Tera Term	11
Figure 3c – OriginIoT connected to Debug Console	12
Figure 6 – OriginIoT Web Application, login page	15
Figure 7 – OriginIoT Home Tab	16
Figure 8 – Module Details Tab	16
Figure 8 – Command details	17
Figure 9 – New Command	
Figure 9 – Command details	

Figure 10 – Widget preview tab 19
Figure 10 – Widget configuration window20
Figure 11 – Profile Tab
Table 4 – Configuration for I2C Messages 22
Table 5 – Configuration for UART Messages
Table 7: list of orderable parts 25
Figure 32 –J5 connector
Figure 33: ST-Link plug orientation
Figure 34: Wire Colors on J7 connector pins
Figure 35: Power set up for FW upload
Figure 36: STM32 ST-Link Utility
Figure 37: Connecting to module in STM32 ST-Link Utility
Figure 38: Program & Verify in STM32 ST-Link Utility
Figure 40: Successful Firmware Download
Figure 41 – mating Add-on to EVK correctly
Figure 42 – mating Add-on to ORG2101 correctly
Figure 43 – attaching FFC cable to add-on
Figure 43 – attaching FFC cable to EVK

1. SCOPE

This document is a user guide for miniature cellular IoT system evaluation kit (OriginIoT-EVK).

2. DISCLAIMER

All trademarks are properties of their respective owners.

Performance characteristics listed in this document do not constitute a warranty or guarantee of product performance. OriginGPS assumes no liability or responsibility for any claims or damages arising out of the use of this document, or from the use of integrated circuits based on this document. OriginGPS assumes no liability or responsibility for unintentional inaccuracies or omissions in this document.

OriginGPS reserves the right to make changes in its products, specifications and other information at any time without notice.

OriginGPS reserves the right to conduct, from time to time, and at its sole discretion, firmware upgrades. As long as those FW improvements have no material change on end customers, PCN may not be issued. OriginGPS navigation products are not recommended to use in life saving or life sustaining applications.

3. SAFETY INFORMATION

Improper handling and use can cause permanent damage to the product.

4. ESD SENSITIVITY

This product is ESD sensitive device and must be handled with care.

5. CONTACT INFORMATION

Support - <u>iot@origingps.com</u> or <u>Online Form</u> Marketing and sales - <u>marketing@origingps.com</u> Web – <u>www.origingps.com</u> <u>www.origin-iot.com</u>

6. RELATED DOCUMENTATION

Nº	DOCUMENT NAME
1	ORG2101 Datasheet
2	OriginSmart [™] API specifications
3	OriginIoT debug console user guide
4	Spider and Hornet - NMEA Protocol Reference Manual
5	Spider and Hornet - One Socket Protocol Reference Manual
6	Spider and Hornet – OSP GNSS Extension Reference Manual

TABLE 1 - RELATED DOCUMENTATION

7. REVISION HISTORY

REVISION	DATE	CHANGE DESCRIPTION
1.0	March 26, 2018	First Edition – Preliminary
1.1	May 13, 2018	New web application guidance. Mating cycles of connectors. Change in P/n. Minor corrections and clarifications

TABLE 2 - REVISION HISTORY

8. ABOUT ORIGINIOT™

8.1. MODULE DESCRIPTION

The OriginIoT module ORG2101 is a miniature generic cellular IoT system with GNSS tracker and interfaces to peripheral sensors and devices. The data is transferred via cellular communication, stored in a remote server (cloud), and displayed on a web GUI.

The module is communicating through GSM or LTE interface with a cloud-based application. The multi-purpose IoT sensor platform can accommodate sensors and other peripheral devices via UART, SPI, I2C, USB, ADC or GPIO, with superior positional accuracy of stand-alone GNSS. Data is configured over a web interface, eliminating additional embedded FW efforts. The ease and flexibility of adding the mini+mighty OriginIoT to a vast array of applications quickens time to market while minimizing the size of your IoT sensor device.

8.2. ARCHITECTURE

Figure 1 – OriginIoT Architecture

8.3. ORIGINIOT EVK KIT INCLUDING

- OriginIoT ORG2101 module and EVK
- GNSS antenna 12x12x4.3 mm with W.FL connector
- Penta-band GSM antenna with SMA connector (designed to support of all frequency bands, may be varied upon customer application)
- SMA to U.FL connector cable
- Power adapter
- Micro USB cable
- OriginIoT add-on with EVK sensors, DC/DC and charging circuit (optional)

8.4. COMPONENTS ON THE EVK

- Sensors:
 - Accelerometer- ADXL345, U1, by Analog Devices.
 Datasheet: <u>http://www.analog.com/media/en/technical-documentation/data-sheets/ADXL345.pdf</u>
 - Gyroscope- DM00168691, U5, by STMicro Electronics.
 Datasheet:<u>http://www.st.com/content/ccc/resource/technical/document/datasheet/e4</u> /b1/d1/62/1a/e6/44/2f/DM00168691.pdf/files/DM00168691.pdf/jcr:content/translatio ns/en.DM00168691.pdf
 - Electronic Compass- IST8304, U3, by iSentek.
 Datasheet: <u>http://www.isentek.com/cn/dlf.php?file=../ISENTEK/%28201703-13%29IST8304%20Datasheet%20v2.3_brief.pdf</u>
 - Digital Temperature- TMP104, U4, by Texas Instruments. Datasheet: <u>http://www.ti.com/lit/ds/symlink/tmp104.pdf</u>
- FTDI to USB serial chip: FT232RQ, U21.
- Voltage Translator 4bit bi-directional: LSF0204PWR, U2.
- Common mode filter for USB/HDMI: ACM2010-900-2p-T002, U23.
- Buck-Boost Switching Regulator IC Positive Adjustable 1.8V 1 Output 3A: LTC3113IDHD#PBF, U24
- Power Switch ICs- Power Distribution Single 1A Current-Limited, TPS2051B, U25
- 1A Low Noise Fast Transient Response Low Dropout Regulator, TPS3801DCQR

9. GETTING STARTED

9.1. REQUIRED EQUIPMENT

Items needed:

- OriginIoT EVK
- Nano SIM card with data package
- Server with a fixed IP.

OriginIoT module allows the user to communicate with GNSS receiver and sensors through web GUI on a cloud. The communication between OriginIoT and the cloud server is done through cellular network via data sim card. OriginGPS provides a cloud server for evaluation: http://18.184.85.107*

* Server IP can be changed in the future. Please make sure you downloaded the latest publication of this document from <u>www.origingps.com</u>

- PC with a terminal emulator (such as free open source Tera-Term) Tera Term can be downloaded here: <u>http://download.cnet.com/Tera-Term/3000-20432_4-75766675.html</u>
- Micro USB cable (included in the EVK kit)

9.2. CONNECTING THE EVK TO PC VIA DEBUG PORT

In order to configure the OriginIoT to connect to GSM/LTE Network and web server, it is needed to configure the module using DEBUG port connection to PC (J22). Please follow these steps:

1. Insert nano SIM card to its slot. See figure 1.

Note: skip this step if using ORG2101-XXXX-E (embedded SIM)

2. Connect GSM/LTE antenna to the U.Fl connector OriginIoT, See figure 1.

3. Connect GNSS antenna to the W.Fl connector on OriginIoT, See figure 1. (Required only if user wants to evaluate GNSS functionality)

Figure 1 – connection of ORG2101 antennas and SIM card

4. The OriginIoT module should be connected to EVK board up-side down (components' side down) to the area near the OriginIoT logo on the EVK, see figure 2.

Please notice: connection of OriginIoT to EVK is unidirectional – J1 of the module (closer to MCU) should connect to J1 on the EVK.

Note: Extra precaution is required upon insertion / withdrawal of ORG2101 to EVK. Incautious handling can alter the performance of the connectors.

You know that you are connected correctly if:

- 1. J4 for U.FL antenna fits inside its socket on the EVK
- 2. OriginIoT fits in white outlines drawn on the EVK (silk screen)

Figure 2 - mating ORG2101 to EVK correctly

5. Connect USB Power/Console of the EVK to PC via micro USB cable (J22). See figure 3.

6. Supply power to EVK - Connect the power adapter to the EVK (J26). See figure 3.

USB connector to

PC via J22

EVK powered by external 6V power supply

Figure 3 – powering up EVK and ORG2101

7. Open terminal on your PC and connect to corresponding COM port of the OriginIoT with a baud rate of 460800 bps.

In Tera Term – go to Setup - > Serial Port (See figure 3a), select the COM port and set baud rate to 460800 bps. Press "OK". See figure 3b.

Full communication parameters:

- Baud Rate: 460800
- Data Bits: 8
- Stop Bits: 1
- Flow Control: None
- Parity: None

Figure 3a – Serial port in Tera Term

Tera Term: Serial port setup				Х
Port:	COM23	~	ОК	
<u>B</u> aud rate: <u>D</u> ata:	460800 8 bit	~	Cancel	
P <u>a</u> rity:	none	~		
<u>S</u> top:	1 bit	~	<u>H</u> elp	
<u>F</u> low control:	none	~		
Transmit delay 0 msec/ <u>c</u> har 0 msec/ <u>l</u> ine				

Figure 3b – COM settings in Tera Term

8. Supply power to OriginIoT via DC/DC circuit by placing jumper J24. See figure 3.

Note: the EVK can be powered by USB (J22) or Plug (J26) determined by jumper J24. Note: you can choose one of two DC/DC circuits provided on the EVK – one by Texas Instruments TPS63070 or one by Linear Technology LTC3113. To switch between them use slide switch J30

After supplying power to OriginIoT you should see a welcome message and GSM/LTE start-up messages.

8. While connected, press Enter key in the terminal.You should see the command line "ORG>" in the terminal window. See Figure 3c.

Figure 3c – OriginIoT connected to Debug Console

Now the module can be accessed via the debug console. Please refer to document "OriginIoT debug console user guide" for the complete list of functions available via the debug console.

10. CONNECTING ORIGINIOT TO A SERVER

10.1. CELLULAR NETWORK PARAMETERS

In order to allow OriginIoT sending data via cellular network, initial cellular configuration should be defined. This is done one time only for your specific SIM card, and includes several parameters of your SIM network:

- APN Access Point Network
- Username**
- Password**

**Username and Password are required only by several cellular providers and sometimes they are not needed at all.

This data can be found on the cellular providers' website or with the SIM card you received from your operator.

10.2. ATTRIBUTING ORIGINIOT TO A SERVER

OriginIoT[™] comes preconfigured to connect to OriginGPS's evaluation server at <u>http://18.184.85.107</u>. Please contact our support team at iot@origingps.com if you need your products preconfigured with a different server and network configuration.

In order to attribute the OriginIoT to this server or a different server, please follow these steps:

1. To see current OriginIoT network configuration, enter the following command:

gsm 0 network

See figure 4 for output example.

Figure 4 – OriginIoT Configuration example

2. The "Access Portal" is the APN of your SIM card provider's network.

The "Hostname" is the hostname or IP address of the Cloud based Application – the server to which the module is connecting to.

The "Port" is the port used by the Cloud Application to receive all messages from the module.

The "Connected" line is set to "true" if the GSM/LTE has successfully connected to the Access Portal. Otherwise it is set to "false".

3. To set these fields use the command:

```
gsm <instance> set <portal|hostname|port> ...
```

For example, the command to change the APN is:

gsm 0 set portal

The operator will be prompted with a " \rightarrow " and must fill in the string that is the new portal setting. The same must be done for each of the other network settings if required to be changed. The same method applies if changing the server address or the port is required.

4. Once the changes are made, the operator must save them to flash using the command:

gsm 0 save

See figure 5 for example.


```
Figure 5 – Setting OriginIoT network configuration and saving to flash
```

10.3. ENTERING CELLULAR-NETWORK PARAMETERS – GSM/LTE AUTHENTICATION COMMAND

In order to configure your SIM card, use in the debug console the "authen" command. To see current configuration, input:

gsm 0 authen show You will receive the following output:

Since the module is shipped without authentication settings, they are shown as empty fields here. The "authen" sub-command lets the operator set 3 fields: PIN, Username and Password. The PIN is a 4-8 digit number provided with the SIM card, if required by the operator. If Username and Password are required (see section 9.3) then the values of these fields are provided by the network operator as well. If there is no requirement for them then these fields can remain blank.

To set these fields use the command:

gsm 0 authen enter

The operator will be prompted for each of the 3 fields. If the field is not required, exit the field by typing the "Enter" key.

Once completed, the operator can once again use the command "gsm 0 authen show" to check that the values entered are correct. If they values are correct, they must be saved to flash using the following command:

```
gsm 0 authen save
```

The next time the system boots these fields will be used in the wireless network connectivity.

5. In the end of the process, while the EVK is successfully connected to a server, the output should look like this:

ORG> gsm 0 network Access Portal: internet.com Hostname: 80.178.110.20 Port: 31000 Connected: true

IP Address: 25.48.187.64

(the IP is dynamic)

The last entry "IP Address" is the GSM/LTE's IP address given to the module by the Internet providers DHCP servers and is not a configurable item.

11. ORIGINIOT WEB APPLICATION

11.1. OVERVIEW

This chapter applies to users who choose to use OriginIoT evaluation server. The OriginIoT[™] web application server is an interface to configure and view modules with associated interfaces, devices, messages, and commands. User-created and System commands can be executed via user friendly GUI interfaces.

11.2. USER LOG IN

Website address of the web application is: <u>http://18.184.85.170</u> (resides on Amazon Web Services cloud).

When entering this address, you will be automatically redirected to the login page. See figure 6.

Figure 6 – OriginIoT Web Application, login page

Please enter the credentials you received from your OriginGPS representative. You will be able to change the password from the Profile tab. Clicking the \checkmark symbol will redirect you to the Home tab.

11.3. WEB HOME TAB

Each OriginIoT module has an ID number associated to it by this specific server. The unique ID in the server is associated with the module upon its first registration to the server. The unique ID is linked to the module's IMEI (International Mobile Station Equipment Identity). The modules that you purchased

are added by us to your profile and will appear once you are logged in.

OriginGP	S Module Manager								Hello, Brandon Oakes 🛛 🚱
				Type to filter the id or imei columns					
	ID	IMEI	HW	SW	MAC	Part Num	Serial	Status	Last Connection
13		35730007065428				0		\$\$	
1 total									

Clicking the row of the module will forward you to the device details page. Red link symbol in the status column shows the connection status of your OriginIoT. Red symbol means no connection, green means good connection between module and server. Note you will need to refresh the page to get the latest connectivity status from the modules.

11.4 MODULE DETAILS TAB

- map	
log	
No data to display	
◆ 10 0	
Module 11	
337500704532	
0	PART NUM
0	STATUS
100 EXECT	
Commands	
• 49 Gyo Satus GET 🕨 🦉 🛱	
🕴 53 ADIs, config 587 🕨 🧪 🗓	
> 55 ADX, Data Format SET 🕨 🥜 💼	
🕨 57 ADIL measure mode 587 🕨 🥜 🛍	
i 58 ADILINUS MULT,GET 🅦 🥜 🛅	
- 66 P.7HE.GT GET 🕨 🧭 🛍	
🔸 67 Genuar Heam Set St7 🕨 🥜 🛅	
• 66 Ceruw det det 🕨 🧭 🛅	
1 tou	

Figure 8 – Module Details Tab

There are 4 windows in the module details tab: Log, Commands, Tools and Details.

- Log showing data sent and received to/from the module. The log is saved locally, it will be deleted if page is refreshed.
- Commands showing all commands that were entered in the system. Clicking on the command row will open up the command details line that shows the byte string that will be sent to the module upon execution of the command (see figure 8). Clicking on the yellow copy button will copy the command byte string to the clipboard as a string (00 0b 80 05 04...).

56

nd byte

41 <u>a6</u> <u>31 01 03</u> dev h dev d

ADXL Data Format

Figure 8 – Command details

Each command has three buttons in its line: play, edit and delete. Play takes the form of a blue airplane symbol when a mutli_GET or Multi_BUF command is entered. The green play symbol executes the command, you will see the sent command in the log. The blue airplane button will route the user to the preview tab, where he can see the data in the widgets. The yellow edit button will open the new message windows pre-loaded with the data of the edited message. The red delete button remove the command from the list and from the database.

SET

- Tools allows the user to choose from 3 available options (red reset button not implemented yet).
 - The green "+" button opens a new message window and allows the user to add a new command.

🥒 🗎

- The ">_" button allows the user to write a custom message, bypassing the new message window restrictions.
- The blue "loopback" button Dinitiates a loopback test to test the link status of the module to the server. By executing a loopback test you can ping the module in order to check its connectivity status (this test only checks the connectivity of the module to the server, not the link state or status of peripheral sensors/devices). The structure of the loopback test message is described in API specifications document. The created sent message and the message received from the module will show up on the log area. If unsuccessful, you will not receive any response.

Note: you will not receive a success notification if the module is not yet connected to the server.

If you are connected to debug console, please wait until you receive:

00021788 [INFO] (MCU_ProcessAdminMsg:1086) Module is registered with host application.

```
In the debug console, successful loopback message will print:

ORG> (MCU_ProcessSetMsg:1027): Received App Loopback message

0x000000: 00 0d 80 00 04 20 41 00 64 01 02 03 04 .....

A.d....

(MCU_ProcessSetMsg:1043): Outgoing message...

0x000000: 00 0c 00 80 10 20 00 65 01 02 03 04 .....

.e....
```

• Module Details – shows the IMEI and the link state of the module, with place holder for future HW and SW versions, last connection time, MAC address and module serial number.

11.5 ADDING A NEW COMMAND

For the user convenience, the New Command window allows to easily define a message via online form. There are no format constraints for the inputs so user has to make sure data is inserted correctly, two characters for bytes (Hexadecimal) with space between bytes. The count field is updated automatically when new bytes are added/removed.

Please consult the OriginSmart API Specification document to learn what inputs are required in Type, Source, Destination, ExpAck, ExpRsp, Device Header and Device Data.

The result command is the actual string that will be sent to the module.

New Command				
Name ADXL Data Format				
Count 00 0b	Type SET - 0x04 +			
Source 80	ExpACK 20			
Destination 05	ExpRsp 41			
Device Header a6				
Device Data 31 01 03				
Result: 00 0b 80 05 04 20 41 a6 31 01 03				
Save				

11.6 ADDING A CUSTOM COMMAND

The user can send any string he wants to the device using this custom command feature. If the command cannot be interpreted by the OriginIoT module, no response will be issued. If the first two bytes in the system, which are dedicated for message length, are not correct, the message will not be sent to the module.

The user can reach the custom command window by clicking on the ">_" button in the Tools section. Clicking on Close will close the window without sending. Clicking on Send will send the message and close the window.

	Custom command				
Command					
þo oo oo oo					
	Close Send				

Figure 9 – Command details

11.7 WIDGET PREVIEW TAB

Figure 10 – Widget preview tab

OriginGPS has developed some sample widgets to demonstrate the functionality of the module. These widgets include:

- 3D Preview of the module+addon1 assembly, controllable by accelerometer
- Google maps preview, showing GNSS locations
- Sensors preview, showing temperature, compass, and gyro data.
- Logs, showing raw data transferred to and from the module. The log widget allows you to filter some of the messages (GNSS, Registration, Loop Back, Multi_Get). The log widget also allows you to download the data of the log as a .log file.
- Operations, allowing the user to select which device to operate according to IMEI; start/stop listening to selected device, and start/stop Multi_Get and Multi_Buf messages.

11.8 WIDGET CONGIFURATION

Figure 10 – Widget configuration window

Each widget can be configured by clicking the source. In order for the widget to present the required information, the user needs to set the type of message to listen to. The fields name, type, source, destination and pattern are common to all widgets. Widgets that are planed to be used with 3 dimensional data have invert axis function that adds a (-) sign to all raw data (in case your sensor is physically oriented in negative direction).

In "name" you can put any string as input. "type" allows you to choose from a drop-down menu. Under "source" and "destination" you should choose the hexadecimal interface ID from which and to where your message is sent (the message you want to present with the widget).

"Pattern" allows you to choose which of the messages from the chosen interface to listen to. The pattern should be in Hexadecimal byte sting (not a string). For example, if you look for a \$GNRMC NMEA message, you should enter 24 47 4e 52 4d 43.

OriginGPS					
Profile	Profile				
User Info		Change Password			
37		Current password			
Brandon Oa	kes 🛛	Name			
brandon@d	rigingps.com	nume			
USER	6	Repeat new password			
Company					
brandon@d	rigingps.com	Email			
Phone					

11.9 PROFILE TAB

Figure 11 – Profile Tab

The profile tab allows the user to see its info: ID, Name, Username, role (user or admin), company, email and phone number. This tab also allows the user to change his password.

	- 20 -	
OriginIoT EVK User Guide	Rev. 1.1	5.13.18

12. OPERATING THE SENSORS ON THE EVK

The EVK has 5 sensors (including the GNSS sensor on the OriginIoT module) connected via 3 interfaces: GNSS and temperature sensors connected via two UART interfaces (IF_20 and IF_03 respectively) Accelerometer, Compass and Gyroscope connected via I2C (IF_05).

12.1 PARAMETER SETUP

All sensors must to be configured ("Committed") on the device using an IF_PARAM_SET message has specified in the API spec document.

The required parameters for each peripheral device can be found in the device datasheet. OriginIoT module does not restrict the developer with the specific devices that he can connect to the module as long as they interface with I2C, UART, SPI or GPIO. Every device has its own parameters that are required in this step. For convenience, table 3 below lists all the parameters that are required for configuring the devices that the EVK equips.

Device	Device P/N	IF_ID	Parameters						
UART	Type Interface		Baud Rate	Flow Control	Stop Bit	Parity	Data Bits	Data Ready IF_ID	Data Over Run Action
GPS	ORG4572	03	4800-230400	Disable	1	None	8	N/A	N/A
Temperature	TMP104	20	Auto-baud	Disable	1	None	7	N/A	N/A
			mode 3						
			Addressing	Bit Rate	Regist	er E	Data	Data Over	Device
12C -	Type Interface		Mode		Туре	e R	eady	Run	Address
						П	ID	Action	(0x)
eCompass	IST8304	05	7-bit	100 kbps	BYTE	E I	N/A	N/A	18
Gyroscope	DM00168691	05	7-bit	100 kbps	BYTE	E I	N/A	N/A	d2
Accelerometer	ADXL345	05	7-bit	100 kbps	BYTE	E I	N/A	N/A	a6

Table 3 – Configuration parameters for EVK sensors

If you are using a debug console, you will see this message printed after successful configuration message (in this example we commit the accelerometer ADXL345):

(MCU_ProcessParamSetMsg:575): Parameter Set Dump... 0x000000: 00 13 80 00 04 20 41 00 06 05 03 00 01 01 53 00 A....S. 0x000010: 00 00 00 ... (I2C_ProcessParamSetMessage:360): PARAM_SET command... 0x000000: 00 13 80 00 04 20 41 00 06 05 03 00 01 01 53 00 A....S. 0x000010: 00 00 00 ... (I2C_ProcessParamSetMessage:413): Outgoing I2C Response message... 0x000000: 00 0b 00 80 10 20 00 07 05 03 01

12.2 ACTIVATING THE SENSORS

To understand what messages shall be sent to achieve a certain functionality for a specific device one can refer to the datasheets of the devices. Usually under "Register map" you will find the description of the functionality each register address is responsible for and what kind of data to set in it to achieve this functionality. This will help you fill the register start, device field data and expected number of bytes fields in SET and GET messages (please refer to API spec document to see the complete message structure). The full register map of the devices on the EVK can be found in appendix C.

For your convenience, tables 4 and 5 offer sample set and get message configurations for the sensors.

I2C Device Mes	sage:							
Device Name	Command Type	Message Name	ЕхрАСК	ExpRsp	Expect Number of Bytes	Register start	Device field Data(0x)	Notes
								10 bit, right justify
Accelerometer	SET	acceDataFormat	FALSE	TRUE		0x31	0x0	format
	SET	acceMeasureMode	FALSE	TRUE		0x2d	0x28	
	GET	acceReadData	FALSE		0x6	0x32		
Gyroscope	SET	gyroMeasureMode	FALSE	TRUE		0x20	0x0f	
	GET	gyroReadData	FALSE		0x6	0x28		
compass	SET	CompMeasureMode	FALSE	TRUE		0x0a	0x0a	
	GET	CompReadData	FALSE		0x06	0x3		
	GET	CompReadTemperature	FALSE	TRUE	0x2	0x1c		

Table 4 – Configuration for I2C Messages

Table 5 – Configuration for UART Messages

If you are using a serial debug console you will be able to see the commands received on the module and the responses issued by the module. For example, this is what you will receive on the console after successful dataFormat SET message, measureMode SET message and readData GET messages for the accelerometer:

(i2cProcessSetMsg:759): Set message... 0x000000: 00 0b 80 05 04 20 41 53 31 01 00 AS1..


```
00260504 [DEBUG] (i2cProcessSetMsg():764): the Ack flag: 0x20 the RSP
Flag: 0x41
00260505 [DEBUG] (i2cProcessSetMsg():769): Device Address: 0x53
00260520 [DEBUG] (i2cProcessSetMsg():784): The Start Reg: 0x31
00260532 [DEBUG] (i2cProcessSetMsg():797): Number of bytes: 1
(i2cProcessSetMsg:834): Outgoing Set msg Response...
0x000000: 00 09 05 80 10 20 53 31 01
                                                          .... S1.
(i2cProcessSetMsg:759): Set message...
0x000000: 00 0b 80 05 04 20 41 53 2d 01 28
                                                         ..... AS-.(
00275941 [DEBUG] (i2cProcessSetMsg():764): the Ack flag: 0x20 the RSP
Flag: 0x41
00275942 [DEBUG] (i2cProcessSetMsg():769): Device Address: 0x53
00275957 [DEBUG] (i2cProcessSetMsg():784): The Start Reg: 0x2d
00275969 [DEBUG] (i2cProcessSetMsg():797): Number of bytes: 1
(i2cProcessSetMsg:834): Outgoing Set msg Response...
0x000000: 00 09 05 80 10 20 53 2d 01
                                                          ..... S-.
(i2cProcessGetMsg:443): Get Message...
0x000000: 00 09 80 05 02 20 06 53 32
                                                          (i2cProcessGetMsg:503): Outgoing Get response msg...
0x000000: 00 0f 05 80 10 20 53 32 06 0a 00 07 00 e7 00
                                                          . . . . .
S2....
```

12.2 WIDGET CONFIGURATION

For your convenience we added table 5 below to help in configuring the widgets to listen to the sample sensors messages.

Widget	Sensor	Туре	Source	Destination	Pattern
3D Preview	ADXL345	MULTI_RSP – 0x16	05	80	00 06
Map Preview	GNSS (Internal)	NOTIFY – 0x01	03	80	24 47 4e 52 4d 43
Temperature	IST8304	MULTI_RSP – 0x16	05	80	00 02
Compass	IST8304	MULTI_RSP – 0x16	05	80	00 06
Gyro	DM00168691	MULTI_RSP – 0x16	05	80	00 06

13. ORDERING INFORMATION

- 1. Selection of communication technology:
 - 2G = 2G GPRS
 - 3G = 3G HSPA
 - C1 = LTE Cat 1
 - CM = LTE Cat M*
 - NB = LTE Cat NB1 *
- 2. Selection of communication:
 - EU= EMEA/APAC
 - GL=Global
 - US = North America
 - JA = Japan
 - CH = China
- 3. Selection of SIM type
 - T = Traditional plastic SIM card holder
 - E = Embedded SIM

* Please contact iot@origingps.com

List of orderable parts				
ORG2101-2GEU-T-EVK	ORG2101-3GEU-T-EVK	ORG2101-C1US-T-EVK		
ORG2101-2GEU-E-EVK	ORG2101-3GEU-E-EVK	ORG2101-C1US-E-EVK		
ORG2101-2GGL-T-EVK	ORG2101-3GUS-T-EVK	ORG2101-C1JA-T-EVK		
ORG2101-2GGL-E-EVK	ORG2101-3GUS-E-EVK	ORG2101-C1JA-E-EVK		

Table 7: list of orderable parts

Please refer to document "ORG2101 Datasheet" for complete details of the devices.

APPENDIX A – PORTS AND POWER

Power input connector – J26. 6V/3A. or J22 USB. To determine which is the power supply to be used use jumper J24.

J22 is also used for serial debug console interface

	- 25 -	
OriginIoT EVK User Guide	Rev. 1.1	5.13.18

USB 2.0 for input from external devices – J25.

MCU cold restart button – SW1

[Note: push the restart button for at list one second to allow GNSS module to fully restart]

Disconnect EVK sensors – Jumper J28

Auxiliary mezzanine connector - J5:

PAD	NAME	FUNCTION	DIRECTION
1	LPUART1_RX	UART Receive	Input
2	I2C1 SCL	I2C Serial Clock	Input
3	LPUART1_TX	UART Transmit	Output
4	I2C1 SDA	I2C Serial Data	Bi-directional
5	SWDIO	JTAG / Firmware Loading Pin	Bi-directional
6	SWCLK	JTAG / Firmware Loading Pin	Bi-directional
7	SPI1_MISO	SPI Data Out	Output
8	SPI1_SCK	SPI Serial Clock	Input
9	WAKEUP_2_PIN	Power Status	Output
10	SPI1_MOSI	SPI Data In	Input
11	WAKEUP_1_PIN	Power Status	Output
12	RST_MCU	Asynchronous Reset	Input
13	SW_UPDATE	Shutdown comm. module after SW update	Input
14	1PPS	UTC Time Mark	Output
15	GPIO_OUT_1	GPIO Output	Output
16	GPIO_OUT_2	GPIO Output	Output
17	GPIO_OUT_4	GPIO Out	Output
18	TIM1_CH1	Timer Function	Input
19	ADC1_IN	Analogue to Digital Input	Input
20	DAC1_OUT1	Digital to Analogue	Output
21	GPIO6	GPIO	Bi-directional
22	NC	Not Connected	
23	Do not use	Not Connected	
24	Do not use	Not Connected	
25	GPIO12	GPIO	Bi-directional
26	GPIO8	GPIO	Bi-directional
27	GPIO14	GPIO	Bi-directional
28	GPIO3	GPIO	Bi-directional

29	VSW	Battery Power Input	Power
30	VIN	EVK Power Supply	Power
31	VSW	Battery Power Input	Power
32	VIN	EVK Power Supply	Power
33	VCC3V3AUX	3.3V Power Supply	Power
34	VIN	EVK Power Supply	Power
35	VCC3V3AUX	3.3V Power Supply	Power
36	GND	System Ground	Power
37	GND	System Ground	Power
38	GND	System Ground	Power
39	GND	System Ground	Power
40	GND	System Ground	Power

Figure 32 –J5 connector

APPENDIX B – FIRMWARE UPLOAD (FLASHING) FOR ORIGINIOT MODULE

OriginIoT module in the EVK is supplied with the company proprietary OriginSmart[™] FW, designed to allow codeless configuration of the remote module without any FW changes.

If for any reason there is a need to upload firmware, this section explains how this is done.

Required equipment for FW upload:

- ST-Link/v2 ISOL STM8 & STM32 controller

- ST-LINK/V2 ISOL MCU STM8 & STM32 and STM32-ST-LINK Utility. This application can be downloaded here:

http://en.freedownloadmanager.org/Windows-PC/STM32-ST-Link-Utility-FREE.html

1. The plug supplied along with ST-LINK/V2 controller is suggested for FW upload. Connect the plug to the controller in orientation as shown in figure 33.

Figure 33: ST-Link plug orientation

2. Connect the wires to the J5 connector on EVK board in a method that described in table 8 and figures 34.

Wire Color	Function	Pin Number on J7 connector
------------	----------	----------------------------

OriginIoT	EVK	User	Guide
-----------	-----	------	-------

Black	Ground	38
Red	Vcc	33
Orange	JTAG / Firmware Loading Plug	6
Yellow	JTAG / Firmware Loading Plug	5
Black – Separate wire on top right pin of controller	Ground	40

Table 8 – Wires Connection to EVK board

Figure 34: Wire Colors on J7 connector pins

All the other wires in the plug (green, blue, white) are not relevant and should not be connected.

3. Connect the ST-Link to PC via USB.

Power on the EVK and the module – plug power connector J26 or USB connector J22, place jumper J24 accordingly.

4. Open STM32 ST-LINK Utility. Press Target -> Connect.

1		STM32 ST-LINK Utility	- = ×
File Edit View	Target ST-LINK External Loader H	elp	
File Edit View	Target ST-LINK External Loader H Connect CTRL+D Disconnect CTRL+D Erase Chip CTRL+E Erase Sank1 CTRL+E Erase Sectors Program. Program & Verify CTRL+P Blank Check Memory Checksum Target memory compare with file Option Bytes CTRL+B MCU Core Automatic Mode	elp 22 bits 22 bits Pevice ID Revision ID Flash size	LiveUpdate
	Jeungan		

Figure 36: STM32 ST-Link Utility

5. In case the connection is fine, you should see the following screen, with message: "Connected via SWD". See figure 37.

In case you get an error and cannot connect – please check your wires connection.

ile Edit View 1 📑 📊 🔐 🤇			ST	M32 ST-LIN	K Utility			- • ×
3 🔲 🛛 🌐 🤇	rarget ST-LI	NK External Lo	oader Help					
	l: 🥖 🚿	. 🙆 🔜						
Memory display	• • •	~ _				Device	STM32L47x/L48x	
Addrase: 0v08000000 v Size: 0v28E7C Data Width: 32 bits v Device ID 0x415								
Address: UXU8UUUUUU V Size: 0x28E7C Data Width: 32 bits V						Revision ID	Rev 4	
Plash size 1MBytes							1MBytes	Livelledate
arget memory, Addre	ss range: [0x0/	3000000 0x08028	3E7C]					Liveopuate
Address	0	4	8	С	ASCII			
0x0800000	20018000	0801C991	08019051	0801C9ED	.€. ′o	Qo		
0x08000010	0801C9ED	0801C9ED	0801C9EC	00000000	650			
Dx08000020	0000000	00000000	00000000	080032E9		2+		
0x08000030	0801C9ED	00000000	080034E9	0801905D	4	.oo]		
0x08000040	0801C9ED	0801C9ED	0801C9ED	0801C9ED	ö n. .ö	a		
Dx08000050	0801C9ED	0801C9ED	0801C9ED	0801C9ED	ю п ю	aaoa		
0x08000060	0801C9ED	0801C9ED	0801C9ED	0801C9ED	ю п ю	a		
0x08000070	0801C9ED	0801C9ED	0801C9ED	0801C9ED	ю п ю	a		
Dx08000080	0801909D	0801C9ED	0801C9ED	0801C9ED	`o n.			
								>

Figure 37: Connecting to module in STM32 ST-Link Utility

6. Click on "Target->Program & Verify". See figure 38.

B				S	TM3	2 ST-LINK Utility			- 🗆 ×	
File Edit View	Target	ST-LINK	External Lo	oader Help						
Aemory display	C D	onnect isconnect	с	CTRL+D				Device	STM32L47x/L48x	
Address: 0x080	Er Er	rase Chip rase Bank1	С	TRL+E		32 bits ∨		Device ID Revision ID Flash size	0x415 Rev 4 1MBytes	
Device Memory @ (E	rase Bank2								LiveUpdate
Target memory, Add	E	rase Sectors				L				
Address	D	rogram					ASCII			^
0x0800000	P	Program		_	1C9ED	.€. %	oQo			
0x08000010	P	rogram & V	erity C	TKL+P		00000	٥٢	о п. .оп		
	B	lank Check				00000		2		

Figure 38: Program & Verify in STM32 ST-Link Utility

Open file dialog will open. Select your firmware file. This should be a .hex /.bin file.

7. After selecting the file, you will see "download" window. See figure 39. Press Start.

	Download [BF-\	/1-239.hex]	×
Start address	0x08000000		
File path	C:\Users\mark\BF\BF-V1-239.H	nex	Browse
Extra options	Skip Flash Erase	Skip Flash Protection	n verification
Verification	 Verify while programming 	O Verify after programm	ning
Click "Start" to p	program target.		
After programm	ning ☑ Reset after programming	E Full Flash memory Ch	necksum
	Start	Cancel	

Figure 39: Download window

8. After finishing the firmware upload, you should see "Verification...OK" message. See figure 40.

5.13.18

0x08000050	0801C9ED	0801C9ED	0801C9ED	0801C9ED	öaoao)□			
0x08000060	0801C9ED	0801C9ED	0801C9ED	0801C9ED	öaoao				
0x08000070	0801C9ED	0801C9ED	0801C9ED	0801C9ED	öaöaö				
0x08000080	0801909D	0801C9ED	0801C9ED	0801C9ED	ononon		~		
<	1		1		1		>		
10:11:18 : Device ID: 10:11:18 : Device fa: 10:11:18 : Device fa: 10:19:34 : [BF-V1-23 Address R 10:19:34 : [BF-V1-23 10:21:41 : Memory pr 10:21:41 : Programm 10:21:41 : Programm	10:11:18: Device ID:0x415 10:11:18: Device flash Size : 1MBytes 10:19:34: [BF-V1-239.hex] opends successfully. Address Ranges [0x0800000 0x0800018C] [0x08000190 0x08021BE4] [0x08021BE8 0x08028BBC] [0x08080000 0x080802C0] 10:19:34: [BF-V1-239.hex] dhecksum : 0x00F IEE3F 10:21:41: VerificationOK 10:21:41: Programmed memory Checksum: 0x00F 1EE3F 10:21:41: Programmed memory Checksum: 0x00F 1EE3F								
Debug in Low Power n	node enabled.		Device ID:0x41	5		Core State : Live Update Disabled			

Figure 40: Successful Firmware Download

9. Press "Target-> Disconnect" to disconnect the module.

APPENDIX C – REGISTER MAPS FOR SENSORS

Accelerometer -

Address					
Hex	Dec	Name	Type	Reset Value	Description
0x00	0	DEVID	R	11100101	Device ID
0x01 to 0x1C	1 to 28	Reserved			Reserved; do not access
0x1D	29	THRESH_TAP	R/W	0000000	Tap threshold
0x1E	30	OFSX	R/W	00000000	X-axis offset
0x1F	31	OFSY	R/W	00000000	Y-axis offset
0x20	32	OFSZ	R/W	00000000	Z-axis offset
0x21	33	DUR	R/W	00000000	Tap duration
0x22	34	Latent	R/W	00000000	Tap latency
0x23	35	Window	R/W	00000000	Tap window
0x24	36	THRESH_ACT	R/W	00000000	Activity threshold
0x25	37	THRESH_INACT	R/W	00000000	Inactivity threshold
0x26	38	TIME_INACT	R/W	00000000	Inactivity time
0x27	39	ACT_INACT_CTL	R/W	00000000	Axis enable control for activity and inactivity detection
0x28	40	THRESH_FF	R/W	00000000	Free-fall threshold
0x29	41	TIME_FF	R/W	00000000	Free-fall time
0x2A	42	TAP_AXES	R/W	00000000	Axis control for single tap/double tap
0x2B	43	ACT_TAP_STATUS	R	00000000	Source of single tap/double tap
0x2C	44	BW_RATE	R/W	00001010	Data rate and power mode control
0x2D	45	POWER_CTL	R/W	00000000	Power-saving features control
0x2E	46	INT_ENABLE	R/W	00000000	Interrupt enable control
0x2F	47	INT_MAP	R/W	00000000	Interrupt mapping control
0x30	48	INT_SOURCE	R	00000010	Source of interrupts
0x31	49	DATA_FORMAT	R/W	00000000	Data format control
0x32	50	DATAXO	R	00000000	X-Axis Data 0
0x33	51	DATAX1	R	00000000	X-Axis Data 1
0x34	52	DATAYO	R	00000000	Y-Axis Data 0
0x35	53	DATAY1	R	00000000	Y-Axis Data 1
0x36	54	DATAZO	R	00000000	Z-Axis Data 0
0x37	55	DATAZ1	R	00000000	Z-Axis Data 1
0x38	56	FIFO_CTL	R/W	00000000	FIFO control
0x39	57	FIFO_STATUS	R	00000000	FIFO status

TABLE 9– Accelerometer Register Map

eCompass -

Table : Control/Status Register Map defined by Customer								
Register name	Тур	l ² C Addr	Size (bit)	Info				
Who I am	R	00h	8	Device ID				
Status Register 1	R	02h	8	Data Status				
Output Value X_L	R	03h	8	Low byte for X-axis data				
Output Value X_H	R	04h	8	High byte for X-axis data				
Output Value Y_L	R	05h	8	Low byte for Y-axis data				
Output Value Y_H	R	06h	8	High byte for Y-axis data				
Output Value Z_L	R	07h	8	Low byte for Z-axis data				
Output Value Z_H	R	08h	8	High byte for Z-axis data				
Status Register 2	R	09h	8	Data Status				
Control Register 1	R/W	0Ah	8	Chip Control setting 1				
Control Register 2	R/W	0Bh	8	Chip Control setting 2				
Output Value T_L	R	1Ch	8	Low byte for Temperature data				
Output Value T_H	R	1Dh	8	High byte for Temperature data				

TABLE 10- eCompass Register Map

Gyroscope

News	Turn	Regist	Default		
Name	Туре	Hex	Binary		
Reserved	-	00-0E	-	-	
WHO_AM_I	r	OF	000 1111	11010011	
Reserved	-	10-1F	-	-	
CTRL_REG1	rw	20	010 0000	00000111	
CTRL_REG2	rw	21	010 0001	00000000	
CTRL_REG3	rw	22	010 0010	00000000	
CTRL_REG4	rw	23	010 0011	00000000	
CTRL_REG5	rw	24	010 0100	00000000	
REFERENCE/DATACAPTURE	rw	25	010 0101	00000000	
OUT_TEMP	r	26	010 0110	Output	
STATUS_REG	r	27	010 0111	Output	
OUT_X_L	r	28	010 1000	Output	
OUT_X_H	r	29	010 1001	Output	
OUT_Y_L	r	2A	010 1010	Output	
OUT_Y_H	r	2B	010 1011	Output	
OUT_Z_L	r	2C	010 1100	Output	
OUT_Z_H	r	2D	010 1101	Output	
FIFO_CTRL_REG	rw	2E	010 1110	00000000	
FIFO_SRC_REG	r	2F	010 1111	Output	
INT1_CFG	rw	30	011 0000	00000000	
INT1_SRC	r	31	011 0001	Output	
INT1_THS_XH	rw	32	011 0010	00000000	
INT1_THS_XL	rw	33	011 0011	00000000	
INT1_THS_YH	rw	34	011 0100	00000000	
INT1_THS_YL	rw	35	011 0101	00000000	
INT1_THS_ZH	rw	36	011 0110	00000000	
INT1_THS_ZL	rw	37	011 0111	00000000	
INT1_DURATION	rw	38	011 1000	00000000	

TABLE 11– Gyroscope Register Map

APPENDIX D – WORK WITH ORG2101 ADD-ONS

ORG2101 EVK allows developers to test their add-ons (or add-ons purchased directly from OriginGPS) in two manners:

- 1. Dedicated connectors on EVK J3 and J4
- 2. Flat Flexible Cable (FFC) connector J6

To use this EVK functionality, additional required equipment is:

- 1. Add-on developed according to guidelines in ORG2101 Datasheet document, or purchased directly from OriginGPS (For FCC option it shall have FFC connector compatible with Molex 150150451)
- 2. Flat Cable connector Molex 150150451 or compatible (only for FFC connection option)
- 3. Battery compatible with the add-on used (only for FFC connection option)

In this appendix we will demonstrate using ORG2101-AD01 developed by OriginGPS as implementation example.

D.1 Using Add-on via connectors J3 and J4

In this mode of operation, one can test the functionality of the add-on together with ORG2101 module without connecting the add-on to external battery. The addon is powered by the power supply circuits in the EVK.

Note: In this mode you will be able to use both the sensors on the EVK and the also the sensors on the add-on. Make sure that sensors are not occupying the same I2C address as the sensors on the EVK (see table 3)

Please notice: connection of the add-on to EVK is unidirectional – J1 of the add-on (closer to GSM/LTE antenna socket) should connect to J3 on the EVK.

You know that you are connected correctly if add-on fits in white outlines drawn on the EVK (silk screen)

D.2 Using Add-on via FFC connector J6

Using add-on via FFC connector is the closest simulation for the real-life functionality of the add-on in a product. In this mode the addon and the ORG2101 module are powered by a battery (and not from the EVK). The FFC cable allows debugging via the serial console as described in section 9.2.

To use this mode your add-on should include FFC connector which is compatible with Molex FFC 150150451. Note: the flat cable is not included in the EVK.

The user can choose if he wants to operate the sensors on the EVK using Jumper J28. Disconnecting the Jumper cuts power supply to the sensors on the EVK and allowing the user to work solely with the sensors on the Add-on.

To connect Add-on and ORG2101 module through connector J6:

- Prepare ORG2101 Insert nano SIM card to its slot, Connect GSM/LTE antenna to the U.Fl connector OriginIoT, Connect GNSS antenna to the W.Fl connector on OriginIoT, See figure 1 (section 9.2).
- 2. Mate ORG2101 with Add-on connect add-on connectors J1 and J2 to ORG2101 connectors J1 and J2 as shown in figure 42.

Note – mating ORG2101 with Add-on is unidirectional. Make sure that antenna socket is aligned with connector J4.

Figure 42 – mating Add-on to ORG2101 correctly

- 3. Connect assembly to EVK with FFC place FFC cable inside the FFC connector (J6 in our example), see figure 43a.
- 4. Close lever of FFC connector as shown in figure 43b.

Figure 43 – attaching FFC cable to add-on

- In the same manner, connect FFC to FFC connector on the EVK (J6), see figure 44. Pay close attention to the direction of the FCC.
 Note: repeated insertion of FFC, closing and open of actuator can be harmful to the performance of connector J6.
- 6. Supply power to EVK by connecting USB cable from PC to J22 and placing Jumper J24 in USB position, see figure 44.

Figure 43 – attaching FFC cable to EVK

7. Open terminal on your PC and connect to corresponding COM port of the OriginIoT with a baud rate of 57600 bps.

In Tera Term – go to Setup - > Serial Port (See figure 3a, section 9.2), select the COM port and set baud rate to 460800 bps. Press "OK". See figure 3b.

Full communication parameters:

- Baud Rate: 460800
- Data Bits: 8
- Stop Bits: 1
- Flow Control: None
- Parity: None

8. Supply power to OriginIoT via the addon by connecting the battery.

After supplying power to OriginIoT you should see a welcome message and GSM/LTE start-up messages.

9. While connected, press Enter key in the terminal.

You should see the command line "ORG>" in the terminal window. See Figure 3c, section 9.2.

5.13.18

Now the module can be accessed via the debug console. Please refer to document "OriginIoT debug console user guide" for the complete list of functions available via the debug console. Note: you can choose to operate or disconnect the sensors on the EVK using Jumper J28.