

25.08.2017

Revision History

VERSION	DATE	REVISED PAGE NO.	Note
0	25.08.2017		First Issue

Contents

- 1. Summary
- 2. General Specification
- 3. Interface
- 4. Counter Drawing
- 5. Absolute Maximum Ratings
- 6. Electrical Characteristics
- 7. DC Characteristics
- 8. AC Characteristics
- 9. Power ON/OFF Sequence
- 10. Optical Characteristics
- 11. Reliability

1. Summary

This 5.0" TFT is a color active matrix thin film transistor (IPS) liquid crystal display (LCD) that uses amorphous silicon TFT as a switching device. This TFT LCD has a 4.99 (16:9) inch diagonally measured active display area with HD (720 horizontal by 1280 vertical pixel) resolution. This module is a composed of a TFT_LCD module and follows RoHS.

DEM 7201280A VMH-PW-N 2. General Specifications

- Size: 5.0 Inch
- Dot Matrix: 720 x RGB x 1280 Dots
- Module Dimension: 66.10 x 120.40 x 1.85 mm
- Active Area: 62.10 x 110.40 mm
- Dot Pitch: 0.08625 x 0.08625 mm
- LCD Type: IPS TFT, Normally Black, Transmissive
- Viewing Angle: 80/80/80/80
- Aspect Ratio: 16:9
- Backlight Type: LED ,Normally White
- Brightness: typ. 300cd/m2
- With / Without TP: Without TP
- Surface: Glare

*Color tone slight changed by temperature and driving voltage.

3. Interface

3.1. LCM PIN Definition

Pin	Symbol	Function	Remark
1	NC/TP_GND	No connection	
2	NC/TP_SDA	No connection	
3	NC/TP_SCL	No connection	
4	NC/TP_INT	No connection	
5	NC/TP_RST	No connection	
6	NC/YU	No connection	
7	NC/XL	No connection	
8	NC/YD	No connection	
9	NC/XR	No connection	
10 11	VCI	Power supply for analog circuits. Connect to an	
10-11	VCI	external power supply of 2.5V to 3.6V	
12-13	NC	No connection	
		The external reset input	
14	DECET	Initializes the chip with a low input. Be sure to execute a	
14	RLOL I	power-on reset after supplying power.	
		Fix to VDDI level when not in use.	
15	TE	Tearing effect output pin.	
15	16	Leave the pin open when not in use.	
16	NC	No connection	
17-18	GND	Power ground	
10_20		Power supply for analog circuits. Connect to an	
13-20	10,000	external power supply of 1.65V to 3.6V	
21	GND	Power ground	
22	D3P	MIPI DSI differential data pair. (Data lane 3)	
23	D3N	Leave it open or fix to LVDSVSS level when not in use.	
24	GND	Power ground	
25	D2P	MIPI DSI differential data pair. (Data lane 2)	
26	D2N	Leave it open or fix to LVDSVSS level when not in use.	
27	GND	Power ground	
28	CLKP	MIPI DSI differential clock pair	
29	CLKN	Leave it open or fix to LVDSVSS level when not in use.	
30	GND	Power ground	
31	D1P	MIPI DSI differential data pair. (Data lane 1)	
32	D1N	Leave it open or fix to LVDSVSS level when not in use.	
33	GND	Power ground	
34	D0P	MIPI DSI differential data pair. (Data lane 0)	
35	D0N	Leave it open or fix to LVDSVSS level when not in use.	
36-37	GND	Power ground	
38	LED+	Power for LED backlight anode	
39	LED1-	Power for LED1 backlight cathode	
40	LED2-	Power for LED2 backlight cathode	

<u>DEM 7201280A VMH-PW-N</u>

4. Counter Drawing

5. Absolute Maximum Ratings

Item	Symbol	Min	Тур	Max	Unit
Operating Temperature	T _{OP}	-20	_	+70	°C
Storage Temperature	T _{ST}	-30	—	+80	°C

Note: Device is subject to be damaged permanently if stresses beyond those absolute maximum ratings listed above

 Temp. ≦60°C, 90% RH MAX. Temp. >60°C, Absolute Humidity shall be less than 90% RH at 60°C

Production Specification

6. Electrical Characteristics

6.1. Typical Operation Conditions

ltom	Symbol		Values	Unit	Remark	
item	Cymbol	Min.	Тур.	Max.	Ome	Remark
Power Supply for Analog Circuit	VCI	2.5	3.3	3.6	V	
Power Supply for Logic Circuit	IOVCC	1.65	1.8	3.6	V	
Current for Driver	IDD	-	44		mA	VDD=3.3V Note1

6.2. Backlight Driving Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
LED Current	ILED	-	40	-	mA	
LED Voltage	VLED+	19.6	-	23.8	V	Note 1
LED Lifetime		30,000	-	-	Hr	Note 2,3,4

Note 1: There are 1 Groups LED

Note 2: Ta = 25°C

Note 3: Brightness to be decreased to 50% of the initial value

Note 4: The single LED lamp case7.3.

7. DC CHARATERISTICS

7.1. Basic Characteristics for Panel Driving

Parameter	Symbol		Rating		Unit	Condition	Note
	o y moor	Min	Тур	Мах	onne	Contaition	Noto
Logic Low Level	VIL	-0.3	_	0.3*IOVCC	V		Note1
Input Voltage	• 12	0.0			-		
Logic High Level	VIII	0 7*10\/CC	_	IOVCC	V		Note1
Input Voltage	Vін	0.7 10 000		10,000	·		
Logic Low Level	Vol	0			V	l _α = +1 0mΔ	Note1
Output Voltage (TE)	VOL	Ū		0.2 10 000	v		
Logic High Level	Voh	0 8*10\/CC		IOVCC	V	lo⊨= -1 0mA	Note1
Output Voltage (TE)	VOIT			.0000	v		

NOTE1:

Ta = -20 to +70°C, VCI = 2.5V to 3.6V, IOVCC = 1.65V to 3.6V

7.2. DSI DC Characteristics

LP Mode

Barran Comba		O an all the s		Unit		
Parameter	Symbol	Condition	Min.	Min. Typ. Max.		
Logic 1 input voltage	VIHLPCD	LP-CD	450	-	1350	m∨
Logic 0 input voltage	VILLPCD	LP-CD	0.0	-	200	m∨
Logic 1 input voltage	VIHLPRX	LP-RX (CLK, D0 ,D1, D2, D3)	880	-	1350	m∨
Logic 0 input voltage	VILLPRX	LP-RX (CLK, D0 ,D1, D2, D3)	0.0	-	550	m∨
Logic 0 input voltage	VILLPRXULP	LP-RX (CLK ULP mode)	0.0	-	300	m∨
Logic 1 output voltage	VOHLPTX	LP-TX (D0)	1.1	-	1.3	V
Logic 0 output voltage	VOLLPTX	LP-TX (D0)	-50	-	50	m∨
Logic 1 input current	IIH	LP-CD, LP-RX	-	-	10	uA
Logic 0 input current	I _{IL}	LP-CD, LP-RX	-10	-	_	uA

Spike/Glitch Rejection

Spike/Glitch Rejection – DSI									
Signal	Symbol	Parameter	Min	Max	Unit				
CLKP/N, DnP/N	SGD	Input pulse rejection for DSI	I	300	Vps				

DEM 7201280A VMH-PW-N High Speed Mode

Production Specification

Parameter	Symbol	Condition	S	pecificatio	n	Unit
Input Common Mode Voltage for Clock	V _{CMCLK}	CLKP/N Note 2, Note 3	70	-	330	mV
Input Common Mode Voltage for Data	V _{CMDATA}	DnP/N Note 2, Note 3, Note 5	70	-	330	mV
Common Mode Ripple for Clock Equal or Less than 450MHz	V _{CMRCLKL450}	CLKP/N Note 4	-50	-	50	mV
Common Mode Ripple for Data Equal or Less than 450MHz	V _{CMRDATAL450}	DnP/N Note 4, Note 5	-50	-	50	mV
Common Mode Ripple for Clock More than 450MHz (peak sine wave)	V _{CMRCLKM450}	CLKP/N	-	-	100	mV
Common Mode Ripple for Data More than 450MHz (peak sine wave)	V _{CMRDATAM450}	DnP/N Note 5	-	-	100	mV
Differential Input Low Level Threshold Voltage for Clock	V _{THLCLK} -	CLKP/N	-70	-	-	mV
Differential Input Low Level Threshold Voltage for Data	V _{THLDATA} -	DnP/N Note 5	-70	-	-	mV
Differential Input High Level Threshold Voltage for Clock	VTHHCLK+	CLKP/N	-	-	70	mV
Differential Input High Level Threshold Voltage for Data	V _{THHDATA+}	DnP/N Note 5	-	_	70	mV
Single-ended Input Low Voltage	VILHS	CLKP/N, DnP/N Note 3, Note 5	-40	-	-	mV
Single-ended Input High Voltage	VIHHS	CLKP/N, DnP/N Note 3, Note 5	-	-	460	mV
Differential Termination Resistor	R _{TERM}	CLKP/N, DnP/N Note 5	80	100	125	Ω
Single-ended Threshold Voltage for Termination Enable	V _{TERM-EN}	CLKP/N, DnP/N Note 5	-	-	450	mV
Termination Capacitor	CTERM	CLKP/N, DnP/N	-	-	60	pF

Note: n = 0, 1, 2 and 3

8. AC Characteristics

8.1. DSI Interface Timing Characteristics

8.1.1 High Speed Mode – Clock Channel Timing

Signal	Symbol	Parameter	Min	Max	Unit
CLKP/N	2xUI _{INST}	Double UI instantaneous	Note 2	25	ns
CLKP/N	UI _{INSTA} ,UI _{INSTB} (Note 1)	UI instantaneous Half	Note 2	12.5	ns

Notes:

1. UI = UIINSTA = UIINSTB

Data type	Two Lanes speed	Three Lanes speed	Four Lanes speed
Data Type = 00 1110 (0Eh), RGB 565, 16 UI per Pixel	566 Mbps	466 Mbps	366 Mbps
Data Type = 01 1110 (1Eh), RGB 666, 18 UI per Pixel	637 Mbps	525 Mbps	412 Mbps
Data Type = 10 1110 (2Eh), RGB 666 Loosely, 24 UI per Pixel	850 Mbps	700 Mbps	550 Mbps
Data Type = 11 1110 (3Eh), RGB 888, 24 UI per Pixel	850 Mbps	700 Mbps	550 Mbps

8.1.2 High Speed Mode – Data Clock Channel Timing

Signal	Symbol	Parameter	Min	Max
	t _{DS}	Data to Clock Setup time	0.15xUI	-
DnP/N, n=0 and 1	t _{DH}	Clock to Data Hold Time	0.15xUI	-

Table 41: Rise	and Fall	Timings on	Clock an	d Data C	hannels

-			Spe	cificat	tion	
Parameter	Symbol	Condition	Min	Тур	Max	
Differential Disc Time for Cleak		CLKD/N	150		0.3UI	
Differential Rise Time for Clock	UDRTCLK	CLKP/N	150 ps	-	(Note)	
		DnP/N	450		0.3UI	
Differential Rise Time for Data	(DRTDATA	n=0 and 1	150 ps	-	(Note)	
			450		0.3UI	
Differential Fall Time for Clock	I DFTCLK	CLKP/N	150 ps	-	(Note)	
		DnP/N	450		0.3UI	
Differential Fail Time for Data	I DFTDATA	n=0 and 1	150 ps	-	(Note)	

Note: The display module has to meet timing requirements, which are defined for the transmitter (MCU) on MIPI D-Phy standard.

DEM 7201280A VMH-PW-N 8.1.4 Low Power Mode – Bus Turn Around

BTA from Display Module to the MCU

Signal	Symbol	Description	Min	Max	Unit
D0P/N	TLPXM	Length of LP-00, LP-01, LP-10 or LP-11 periods MCU → Display Module (ILI9881C)	50	75	ns
D0P/N	T _{LPXD}	Length of LP-00, LP-01, LP-10 or LP-11 periods Display Module (ILI9881C) → MCU	50	75	ns
D0P/N	T _{TA-SURED}	Time-out before the Display Module (ILI9881C) starts driving	TLPXD	2xT _{LPXD}	ns

Signal	Symbol	Description	Time	Unit
D0P/N	T _{TA-GETD}	Time to drive LP-00 by Display Module (ILI9881C)	5xT _{LPXD}	ns
D0P/N	T _{TA-GOD}	Time to drive LP-00 after turnaround request - MCU	4xT _{LPXD}	ns

Production Specification

Signal	Symbol	Description		Мах	Unit
DnP/N, n = 0 and 1	T _{LPX}	Length of any Low Power State Period	50	-	ns
DnP/N, n = 0 and 1	T _{HS-PREPARE}	Time to drive LP-00 to prepare for HS Transmission	40+4xUI	85+6xUI	ns
DnD/N $n = 0$ and 1	т	Time to enable Data Lane Receiver line termination		2514211	20
Dhe/N, h = 0 and 1	HS-TERM-EN	measured from when Dn crosses VILMAX	-	35+4XUI	ns

8.1.6 Data Lanes from High Speed Mode to Low Power Mode

Note:

If the last load bit is HS-1, the transmitter changes from HS-1 to HS-0. If the last load bit is HS-0, the transmitter changes from HS-0 to HS-1.

Min Unit Signal Symbol Description Max Time-Out at Display Module (ILI9881C) to ignore transition DnP/N, n = 0 and 1 THS-SKIP 40 55+4xUI ns period of EoT DnP/N, n = 0 and 1 Time to driver LP-11 after HS burst 100 T_{HS-EXIT} ns

CLKN, DnN n = 0, 1, 2, 3

Production Specification

Signal	Symbol	Description	Min	Мах	Unit
CLKP/N	T _{CLK-POST}	Time that the MCU shall continue sending HS clock after the last associated Data Lanes has transitioned to LP mode	60+52xUI	-	ns
CLKP/N	T _{CLK-TRAIL}	Time to drive HS differential state after last payload clock bit of a HS transmission burst	60	-	ns
CLKP/N	T _{HS-EXIT}	Time to drive LP-11 after HS burst	100	-	ns
CLKP/N	T _{CLK-PREPARE}	Time to drive LP-00 to prepare for HS transmission	38	95	ns
CLKP/N	T _{CLK-TERM-EN}	Time-out at Clock Lane to enable HS termination	-	38	ns
CLKP/N	T _{CLK-PREPARE} + T _{CLK-ZERO}	Minimum lead HS-0 drive period before starting Clock	300	-	ns
CLKP/N	T _{CLK-PRE}	Time that the HS clock shall be driven prior to any associated Data Lane beginning the transition from LP to HS mode	8xUI	-	ns

Signal	Symbol	Parameter	Min	Max	Unit
RESX	tRW	Reset pulse duration	10		us
	+DT	Poset cancel		5 (Note 1, 5)	ma
	(rt 1	Reset cancel		120 (Note 1, 6, 7)	1115

Notes:

1. The reset cancel includes also required time for loading ID bytes, VCOM setting and other settings from NVM (or similar device) to registers. This loading is done every time when there is HW reset cancel time (tRT) within 5 ms after a rising edge of RESX.

2. Spike due to an electrostatic discharge on RESX line does not cause irregular system reset according to the table below:

RESX Pulse	Action
Shorter than 5us	Reset Rejected
Longer than 10us	Reset
Between 5us and 10us	Reset starts

3. During the Resetting period, the display will be blanked (The display is entering blanking sequence, which maximum time is 120 ms, when Reset Starts in Sleep Out –mode. The display remains the blank state in Sleep In –mode.) and then return to Default condition for Hardware Reset.

4. Spike Rejection also applies during a valid reset pulse as shown below:

5. When Reset applied during Sleep In Mode.

6. When Reset applied during Sleep Out Mode.

7. It is necessary to wait 5msec after releasing RESX before sending commands. Also Sleep Out command cannot be sent for 120msec.

9. Power ON/OFF Sequence

Case B:

Symbol	Characteristics	Min.	Тур.	Max.	Units
T _{VDDI_RISE}	VDDI Rise time	10	-	-	us
т	Case A: VCI Rise time	130			
VCI_RISE	Case B: VCI Rise time	40	-	-	us
T _{PS_RES}	VDDI/VCI on to Reset high	5	-	-	ms
T _{RES_PULSE}	Reset low pulse time	10	-	-	us
T _{FS_CMD}	Reset to first command	10	-	-	ms

Production Specification

10. Optical Characteristics

Tr Tf	<u>ፀ=0° አ መ=0°</u>	-				
Τf	$0 - 0 + \Psi = 0$		10	15	.ms	Note 3.5
		-	20	25	.ms	
CR	At optimized viewing angle	640	800	-	-	Note 4,5
Wx	θ=0° 、Φ=0	0.283	0.303	0.323		Note 2,6,7
Wy		0.303	0.323	0.343		
ΘR	CR≧10	-	80	-		
ΘL		-	80	-	Deg.	Note 1
ΦT		-	80	-		
ΦВ		-	80	-		
-	-	250	300	-	cd/ m ^²	Center of display
	If CR Wx Wy ΘR ΘL ΦT ΦB -	TfAt optimized viewing angle CR At optimized viewing angle Wx $\theta=0^{\circ} \cdot \Phi=0$ Wy ΘR $\Theta=0^{\circ} \cdot \Phi=0$ ΘR ΘR Γ ΘR ΘR Γ ΘR Γ Γ ΦB Γ Γ	TrAt optimized viewing angle-CRAt optimized viewing angle640Wx $\theta=0^{\circ} \cdot \Phi=0$ 0.283Wy $\theta=0^{\circ} \cdot \Phi=0$ 0.303 ΘR $ \Theta L$ $CR \ge 10$ $ \Phi B$ $ \Phi B$ $ -$	Tf - 20 CR At optimized viewing angle 640 800 Wx $\theta = 0^{\circ} \cdot \Phi = 0$ 0.283 0.303 Wy $\theta = 0^{\circ} \cdot \Phi = 0$ 0.303 0.323 ΘR $-$ 80 ΘR $-$ 80 ΘR $-$ 80 ΘL $CR \ge 10$ $-$ 80 ΦB $-$ 80 $-$ 80 $-$ 80 ΦB $-$ 80 $-$ 80 $-$ 80 $-$ 250 300	$ \begin{array}{c c c c c c c } \hline \mbox{Tf} & - & 20 & 25 \\ \hline \mbox{At optimized} \\ viewing angle & 640 & 800 & - \\ \hline \mbox{Wx} & & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & \\ \hline \mbox{Wy} & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & & & & & & & & & & & \\ \hline \$	$ \begin{array}{c c c c c c c } \hline \mbox{Tf} & & & & & & & & & & & & \\ \hline \mbox{CR} & & & & & & & & & & & & & & & \\ \hline \mbox{Wx} & & & & & & & & & & & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & & & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & & & & & & & & & & \\ \hline \mbox{Wy} & & & & & & & & & & & & & & & & & & &$

 $Ta=25^{\circ}C \pm 2^{\circ}C$

Note 1: Definition of viewing angle range

Fig. 11.1. Definition of viewing angle

Note 2: Test equipment setup:

After stabilizing and leaving the panel alone at a driven temperature for 10 minutes, the measurement should be executed. Measurement should be executed in a stable, windless, and dark room. Optical specifications are measured by Topcon BM-7 or BM-5 luminance meter 1.0° field of view at a distance of 50 cm and normal direction.

Fig. 11.2. Optical measurement system setup

Note 3: Definition of Response time:

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time, Tr, is the time between photo detector output intensity changed from 90% to 10%. And fall time, Tf, is the time between photo detector output intensity changed from 10% to 90%

Note 4: Definition of contrast ratio:

The contrast ratio is defined as the following expression.

Contrast ratio (CR) = Luminance measured when LCD on the "White" state Luminance measured when LCD on the "Black" state

Note 5: White Vi = Vi50 \pm 1.5V Black Vi = Vi50 \pm 2.0V

"±" means that the analog input signal swings in phase with VCOM signal.

"±" means that the analog input signal swings out of phase with VCOM signal. The 100% transmission is defined as the transmission of LCD panel when all the input terminals of module are electrically opened.

Note 6: Definition of color chromaticity (CIE 1931) Color coordinates measured at the center point of LCD

Note 7: Measured at the center area of the panel when all the input terminals of LCD panel are electrically opened.

11. Reliability

Content of Reliability Test (Wide temperature, -20°C~+70°C)

Environmental Test			
Test Item	Content of Test	Test Condition	Note
High Temperature	Endurance test applying the high storage temperature	+80°C	2
storage	for a long time.	200hrs	
Low Temperature	Endurance test applying the low storage temperature	-30°C	1,2
storage	for a long time.	200hrs	
High Temperature	Endurance test applying the electric stress (Voltage &	+70°C	
Operation	Current) and the thermal stress to the element for a long time.	200hrs	
Low Temperature	Endurance test applying the electric stress under low	-20°C	1
Operation	temperature for a long time.	200hrs	
High Temperature/	The module should be allowed to stand at	+60°C,90%RH	1,2
Humidity Operation	60□,90%RH max	96hrs	
Thermal Shock	The sample should be allowed stand the following 10	-20°C / +70°C	
Resistance	cycles of operation	10 cycles	
	-20°C +25°C +70°C		
	30min 5min 30min 1 cycle		
Vibration Test	Endurance test applying the vibration during	Total fixed amplitude :	3
	transportation and using.	1.5mm	
		Vibration Frequency :	
		10~55Hz	
		One cycle 60	
		seconds to 3	
		directions of X,Y,Z for	
		Each 15 minutes	
Static Electricity Test	Endurance test applying the electric stress to the	VS=±600V(Contact),	
	terminal.	±800V(Air),	
		RS=3300	
		CS=150pF	
		10 times	1

Note1: No dew condensation to be observed.

Note2: The function test shall be conducted after 4 hours storage at the normal

Temperature and humidity after remove from the test chamber.

Note3: The packing have to including into the vibration testing.