
SLUS488E - SEPTEMBER 2002 - REVISED JULY 2009

8-PIN CURRENT MODE PUSH-PULL PWM CONTROLLERS WITH PROGRAMMABLE SLOPE COMPENSATION

FEATURES

- Programmable Slope Compensation
- Internal Soft-Start on the UCC38083/4
- Cycle-by-Cycle Current Limiting
- Low Start-Up Current of 120 μA and 1.5 mA Typical Run Current
- Single External Component Oscillator Programmable from 50 kHz to 1 MHz
- High-Current Totem-Pole Dual Output Stage Drives Push-Pull Configuration with 1-A Sink and 0.5-A Source Capability
- Current Sense Discharge Transistor to Improve Dynamic Response
- Internally Trimmed Bandgap Reference
- Undervoltage Lockout with Hysteresis

BASIC APPLICATION

UDG-01080

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

APPLICATIONS

- High-Efficiency Switch-Mode Power Supplies
- Telecom dc-to-dc Converters
- Point-of-Load or Point-of-Use Power Modules
- Low-Cost Push-Pull and Half-Bridge Applications

DESCRIPTION

The UCC38083/4/5/6 is a family of BiCMOS pulse width modulation (PWM) controllers for dc-to-dc or off-line fixed-frequency current-mode switching power supplies. The dual output stages are configured for the push-pull topology. Both outputs switch at half the oscillator frequency using a toggle flip-flop. The dead time between the two outputs is typically 110 ns, limiting each output's duty cycle to less than 50%.

The new UCC3808x family is based on the UCC3808A architecture. The major differences include the addition of a programmable slope compensation ramp to the CS signal and the removal of the error amplifier. The current flowing out of the ISET pin through an external resistor is monitored internally to set the magnitude of the slope compensation function. This device also includes an internal discharge transistor from the CS pin to ground, which is activated at each clock cycle after the pulse is terminated. This discharges any filter capacitance on the CS pin during each cycle and helps minimize filter capacitor values and current sense delay.

The UCC38083 and the UCC38084 devices have a typical soft-start interval time of 3.5 ms while the UCC38085 and the UCC38086 has less than 100 μ s for applications where internal soft-start is not desired.

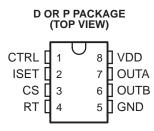
The UCC38083 and the UCC38085 devices have the turn-on/off thresholds of 12.5 V / 8.3 V, while the UCC38084 and the UCC38086 has the turn-on/off thresholds of 4.3 V/4.1 V. Each device is offered in 8-pin TSSOP (PW), 8-pin SOIC (D) and 8-pin PDIP (P) packages.

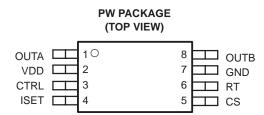
SLUS488E - SEPTEMBER 2002 - REVISED JULY 2009

ORDERING INFORMATION

PACKAGE	θjc(°C/W)	θja(°C/W)
SOIC-8 (D)	42	84 to 160(1)
PDIP-8 (P)	50	110(1)
TSSOP-8 (PW)	32(2)	232 to 257 ⁽²⁾

THERMAL RESISTANCE TABLE


NOTES: (1) Specified θja (junction to ambient) is for devices mounted to 5-inch² FR4 PC board with one ounce copper where noted. When resistance range is given, lower values are for 5 inch² aluminum PC board. Test PWB was 0.062 inch thick and typically used 0.635-mm trace widths for power packages and 1.3-mm trace widths for non-power packages with a 100-mil x 100-mil probe land area at the end of each trace.


(2). Modeled data. If value range given for θja, lower value is for 3x3 inch. 1 oz internal copper ground plane, higher value is for 1x1-inch. ground plane. All model data assumes only one trace for each non-fused lead.

-	INTERNAL	UVLO		PACKAGES			
TA	SOFT START	ON	OFF	SOIC-8 (D)	PDIP-8 (P)	TSSOP-8 (PW)	
	2.5	12.5 V	8.3 V	UCC28083D	UCC28083P	UCC28083PW	
–40°C to 85°C	3.5 ms	4.3 V	4.1 V	UCC28084D	UCC28084P	UCC28084PW	
	75 μs	12.5 V	8.3 V	UCC28085D	UCC28085P	UCC28085PW	
		4.3 V	4.1 V	UCC28086D	UCC28086P	UCC28086PW	
	2.5	12.5 V	8.3 V	UCC38083D	UCC38083P	UCC38083PW	
0°C to 70°C	3.5 ms	4.3 V	4.1 V	UCC38084D	UCC38084P	UCC38084PW	
	75	12.5 V	8.3 V	UCC38085D	UCC38085P	UCC38085PW	
	7 5 μs	4.3 V	4.1 V	UCC38086D	UCC38086P	UCC38086PW	

AVAILABLE OPTIONS

[†] The D and PW packages are available taped and reeled. Add R suffix to device type, e.g. UCC28083DR (2500 devices per reel) or UCC38083PWR (2000 devices per reel).

SLUS488E - SEPTEMBER 2002 - REVISED JULY 2009 .

absolute maximum ratings over operating free-air temperature (unless otherwise noted) [†]						
	_{DD} < 10 mA)					
Supply current, I _{DD}						
Sink current (peak):	OUTA	1.0 A				
	OUTB	1.0 A				
Source current (peak):	OUTA	–0.5 А				
	OUTB	–0.5 А				
Analog inputs:	CTRL	–0.3 V to V _{DD} +0.3 V				
	CS	-0.3 V to V _{DD} +0.3 V, not to exceed 6 V				
	R _{SET} (minimum)	>5 kΩ				
	R _T (–100 μA < I _{RT} < 100 μA)	–0.3 V to 2.0 V				
Power dissipation at TA	A = 25°C (P package)	1 W				
Power dissipation at TA	A = 25°C (D package)	650 mW				
Power dissipation at TA	A = 25°C (PW package)	400 mW				
	perature, T _J					
	sta ·····					
	dering 10 seconds)					

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltages are with respect to GND. Currents are positive into, and negative out of the specified terminal.

electrical characteristics over recommended operating virtual junction temperature range, V_{DD} = 10 V (See Note 1),1-μF capacitor from VDD to GND, R_T = 165 kΩ, R_F = 1 kΩ, C_F = 220 pF, R_{SET} = 50 kΩ, T_A = -40°C to 85°C for UCC2808x, T_A = 0°C to 70°C for UCC3808x, T_A = T_J (unless otherwise noted)

overall

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Start-up current	VDD < UVLO start threshold voltage		120	200	μΑ
Supply current	CTRL = 0 V, CS = 0 V, See Note 1		1.5	2.5	mA

undervoltage lockout

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNITS
Start threshold voltage	UCC38083/5	See Note 1	11.5	12.5	13.5	
	UCC38084/6		4.1	4.3	4.5	
Minimum operating voltage	UCC38083/5		7.6	8.3	9.0	
after start	UCC38084/6		3.9	4.1	4.3	V
	UCC38083/5		3.5	4.2	5.1	
Hysteresis voltage	UCC38084/6		0.1	0.2	0.3	

oscillator

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Frequency	2 x f(OUTA)	180	200	220	kHz
Voltage amplitude	See Note 2	1.4	1.5	1.6	V
Oscillator fall time (dead time)			110	220	ns
RT pin voltage		1.2	1.5	1.6	V

SLUS488E - SEPTEMBER 2002 - REVISED JULY 2009

electrical characteristics over recommended operating virtual junction temperature range, V_{DD} = 10 V (See Note 1),1-µF capacitor from VDD to GND, R_T = 165 kΩ, R_F = 1 kΩ, C_F = 220 pF, $R_{SET} = 50 \text{ k}\Omega$, $T_A = -40^{\circ}\text{C}$ to 85°C for UCC2808x, $T_A = 0^{\circ}\text{C}$ to 70°C for UCC3808x, $T_A = T_J$ (unless otherwise noted)

current sense

PARAMETER	TE	EST CONDITIONS	MIN	TYP	MAX	UNITS
Gain	See Note 3		1.9	2.2	2.5	V/V
Maximum input signal voltage	CTRL = 5 V,	See Note 4	0.47	0.52	0.57	V
CS to output delay time	CTRL = 3.5 V,	$0 \text{ mV} \le CS \le 600 \text{ mV}$		100	200	ns
Source current			-200			nA
Sink current	CS = 0.5 V, See Note 5	RT = 2.0 V,	3	7	12	mA
Overcurrent threshold voltage			0.70	0.75	0.80	V
	CS = 0 V, 25°C		0.55	0.70	0.90	V
CTRL to CS offset voltage	CS = 0 V		0.37	0.70	1.10	V

pulse width modulation

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Maximum duty cycle	Measured at OUTA or OUTB, See Note 7	48%	49%	50%	
Minimum duty cycle	CTRL = 0 V			0%	

output

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Low-level output voltage (OUTA or OUTB)	I _{OUT} = 100 mA		0.5	1.0	
High-level output voltage (OUTA or OUTB)	I _{OUT} = -50 mA, (VDD - VOUT), See Note 6		0.5	1.0	V
Rise time	C _{LOAD} = 1 nF		25	60	
Fall time	C _{LOAD} = 1 nF		25	60	ns

soft-start

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
OUTA/OUTB soft-start interval time, UCC38083/4	CTRL = 1.8 V, CS = 0 V, Duty cycle from 0 to full, See Note 8	1.3	3.5	8.5	ms
OUTA/OUTB soft-start interval time, UCC38085/6	CTRL = 1.8 V, CS = 0 V, Duty cycle from 0 to full, See Note 8	30	75	110	μs

slope compensation

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS		
I _{RAMP} , peak	I_{SET} , peak = 30 μ A, Full duty cycle	125	150	175	μΑ		

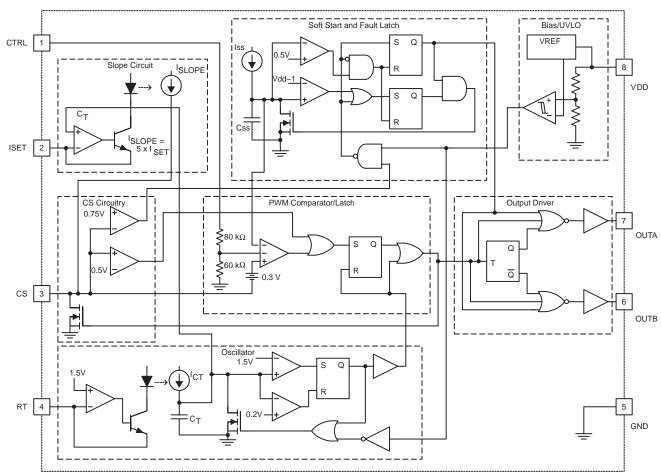
NOTE 1: For UCCx8083/5, set VDD above the start threshold before setting to 10 V.

NOTE 2: Measured at ISET pin.

NOTE 2. Intraduced II. NOTE 3: Gain is defined by A = $\frac{\Delta V_{CTRL}}{\Delta V_{CS}}$, $0 \le V_{CS} \le 0.4$ V.

NOTE 4: Measured at trip point of latch with CS ramped from 0.4 V to 0.6 V.

NOTE 5: This internal current sink on the CS pin is designed to discharge and external filter capacitor. It is not intended to be a dc sink path.


NOTE 6: Not 100% production tested. Ensured by design and also by the rise time test.

NOTE 7: For devices in PW package, parameter tested at wafer probe.

NOTE 8: Ensured by design.

SLUS488E - SEPTEMBER 2002 - REVISED JULY 2009

functional block diagram

UDG-01081

Terminal Functions

TEF	RMINAL		
NAME	NAME PACKAGE		DESCRIPTION
	D OR P		
CS	3	I	The current-sense input to the PWM comparator, the cycle-by-cycle peak current comparator, and the overcurrent comparator. The overcurrent comparator is only intended for fault sensing. Exceeding the overcurrent threshold causes a soft-start cycle. An internal MOSFET discharges the current-sense filter capacitor to improve dynamic performance of the power converter.
CTRL	1	Т	Error voltage input to PWM comparator.
GND	5	-	Reference ground and power ground for all functions. Due to high currents, and high-frequency operation of the IC, a low-impedance circuit board ground plane is highly recommended.
ISET	2	Ι	Current selection for slope compensation.
OUTA	7	0	Alternation bight summation to determine
OUTB	6	0	Alternating high-current output stages.
RT	4	I	Programs the oscillator.
VDD	8	I	Power input connection.

SLUS488E - SEPTEMBER 2002 - REVISED JULY 2009

detailed pin descriptions

CTRL: The error voltage is typically generated by a secondary-side error amplifier and transmitted to the primary-side referenced UCC3808x by means of an opto-coupler. CTRL has an internal divider ratio of 0.45 to maintain a usable range with the minimum V_{DD} of 4.1 V. The UCC38083/UCC38084 family features a built-in full-cycle soft start while the UCC38085/6 does not.

For the UCC38083/4, soft-start is implemented as a clamp at the input to the PWM comparator. This causes the output pulses to start near 0% duty cycle and increase until the clamp exceeds the CTRL voltage.

ISET: Program the slope compensation current ramp by connecting a resistor, RSET, from ISET to ground. The voltage of the ISET pin tracks the 1.5-V internal oscillator ramp, as shown in Figure 1.

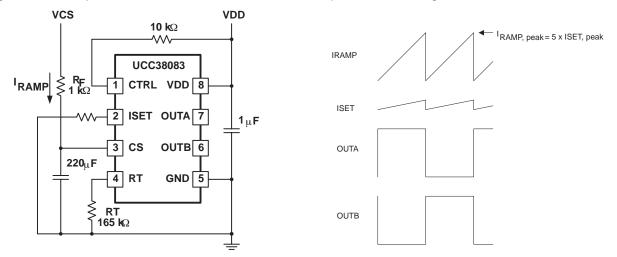


Figure 1. Full Duty Cycle Output

The compensating current source, I_{SLOPE}, at the CS pin is proportional to the ISET current, according to the relation:

$$SLOPE = 5 \times I_{SET}$$
(1)

The ramping current due to I_{SLOPE} develops a voltage across the effective filter impedance that is normally connected from the current sense resistor to the CS input. In order to program a desired compensating slope with a specific peak compensating ramp voltage at the CS pin, use the RSET value in the following equation:

$$RSET = V_{OSC(peak)} \times \left(\frac{5 \times RF}{RAMP \ VOLTAGE \ HEIGHT}\right)$$
(2)
Where $V_{OSC(peak)} = 1.5 \ V$

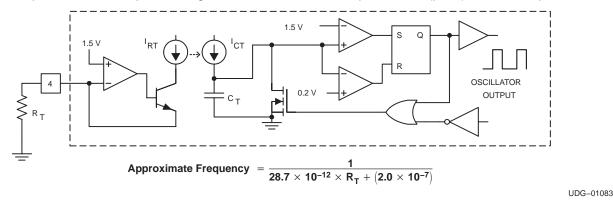
Notice that the PWM Latch drives an internal MOSFET that will discharge an external filtering capacitor on the CS pin. Thus, I_{SLOPE} will appear to terminate when the PWM comparator or the cycle-by-cycle current limit comparator sets the PWM latch. The actual compensating slope is not affected by premature termination of the switching cycle.

I

detailed pin descriptions (continued)

OUTA and OUTB: Alternating high-current output stages. Both stages are capable of driving the gate of a power MOSFET. Each stage is capable of 500-mA peak-source current, and 1-A peak-sink current.

The output stages switch at half the oscillator frequency, in a push-pull configuration. When the voltage on the internal oscillator capacitor is rising, one of the two outputs is high, but during fall time, both outputs are off. This dead time between the two outputs, along with a slower output rise time than fall time, ensures that the two outputs cannot be on at the same time. This dead time is typically 110 ns.


The high-current output drivers consist of MOSFET output devices, which switch from VDD to GND. Each output stage also provides a very low impedance to overshoot and undershoot. This means that in many cases, external Schottky clamp diodes are not required.

RT: The oscillator programming pin. The oscillator features an internal timing capacitor. An external resistor, R_T , sets a current from the RT pin to ground. Due to variations in the internal C_T , nominal V_{RT} of 1.5 V can vary from 1.2 V to 1.6 V

Selecting RT as shown programs the oscillator frequency:

$$\mathsf{RT} = \frac{1}{28.7 \times 10^{-12}} \left(\frac{1}{\mathsf{f}_{\mathsf{OSC}}} - 2.0 \times 10^{-7} \right) \tag{3}$$

where f_{OSC} is in Hz, resistance in Ω . The recommended range of timing resistors is between 25 k Ω and 698 k Ω . For best performance, keep the timing resistor lead from the RT pin to GND (pin 5) as short as possible.

Figure 2. Block Diagram for Oscillator

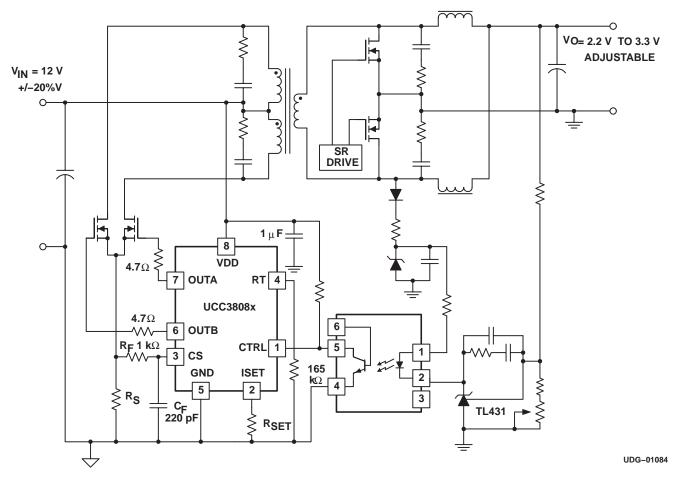
VDD: The power input connection for this device. Although quiescent VDD current is very low, total supply current may be higher, depending on OUTA and OUTB current, and the programmed oscillator frequency. Total VDD current is the sum of quiescent VDD current and the average OUT current. Knowing the operating frequency and the MOSFET gate charge (Q_G), average OUT current can be calculated from:

$$I_{OUT} = Q_G \times f_{OSC}$$

(4)

where f is the oscillator frequency.

To prevent noise problems, bypass VDD to GND with a ceramic capacitor as close to the chip as possible along with an electrolytic capacitor. A $1-\mu F$ decoupling capacitor is recommended.

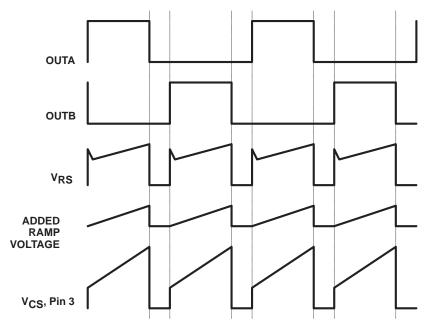


SLUS488E - SEPTEMBER 2002 - REVISED JULY 2009

APPLICATION INFORMATION

The following application circuit shows an isolated $12-V_{IN}$ to 2.5 V_{OUT} push-pull converter with scalable output power (20 W to 200 W). Note that the pinout shown is for SOIC-8 and PDIP-8 packages.

typical application



SLUS488E - SEPTEMBER 2002 - REVISED JULY 2009

APPLICATION INFORMATION

operational waveforms

Figure 3 illustrates how the voltage ramp is effectively added to the voltage across the current sense element V_{CS} , to implement slope compensation.

UDG-01085

Figure 3. Typical Slope Compensation Waveforms at 80% Duty Cycle

In Figure 3, OUTA and OUTB are shown at a duty cycle of 80%, with the associated voltage VRS across the current sense resistor of the primary push-pull power MOSFETs. The current flowing out of CS generates the ramp voltage across the filter resistor R_F that is positioned between the power current sense resistor and the CS pin. This voltage is effectively added to VRS to provide slope compensation at VCS, pin 3. A capacitor C_F is also recommended to filter the waveform at CS.

SLUS488E - SEPTEMBER 2002 - REVISED JULY 2009

layout considerations

To prevent noise problems, bypass VDD to GND with a ceramic capacitor as close to the chip as possible along with an electrolytic capacitor. A $1-\mu F$ decoupling capacitor is recommended.

Use a local ground plane near the small signal pins (CTRL, ISET, CS and RT) of the IC for shielding. Connect the local ground plane to the GND pin with a single trace. Do not extend the local ground plane under the power pins (VDD, OUTA, OUTB and GND). Instead, use signal return traces to the GND pin for ground returns on the side of the integrated circuit with the power pins.

For best performance, keep the timing resistor lead from RT pin (pin 4) to GND (pin 5) as short as possible.

special layout considerations for the TSSOP package

Due to the different pinout and smaller lead pitch of the TSSOP package, special attention must be paid to minimize noise problems. The pinout is different because the device had to be rotated 90° to fit into the smaller TSSOP package.

For example, the two output pins are now on opposite sides of the package. The traces should not run under the package together as they will couple switching noise into analog pins.

Another common problem is when RT and OUTB (pins 6 and 8) are routed together for some distance even though they are not immediate side by side pins. Because of this, when OUTB rises, a voltage spike of upto 400 mV can couple into the RT. This spike causes the internal charge current into CT to be turned off momentarily resulting in lower duty cycle. It is also important that note that the RT pin voltage cannot be stabilized with a capacitor. The RT pin is just a dc voltage to program the internal CT. Instead, keep the OUTB and RT runs short and far from each other and follow the printed wiring board layout suggestions above to fix the problem.

reference design

A reference design is discussed in *50-W Push-Pull Converter Reference Design Using the UCC38083*, TI Literature Number SLUU135. This design controls a push-pull synchronous rectified topology with input range of 18 V to 35 V (24 nominal) and 3.3-V output at 15 A. The schematic is shown in Figure 5 and the board layout for the reference design is shown in Figure 4. Refer to the document for further details.

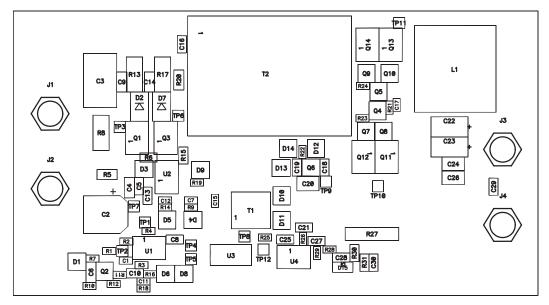
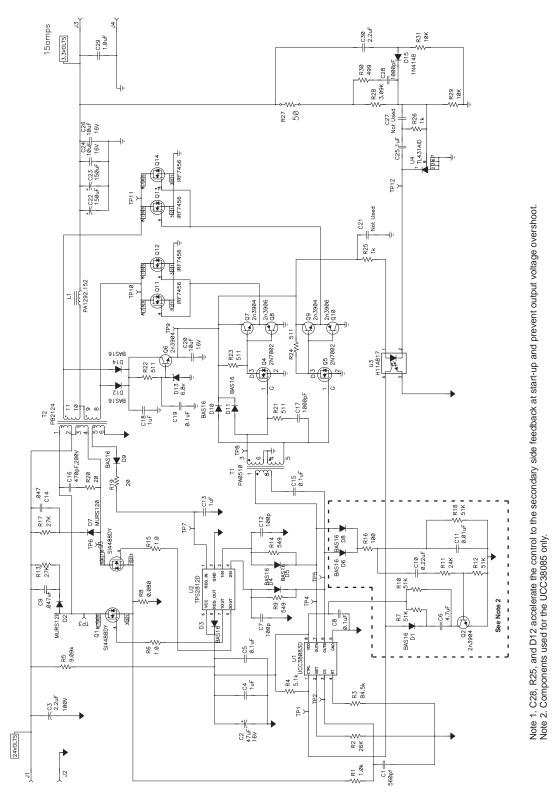
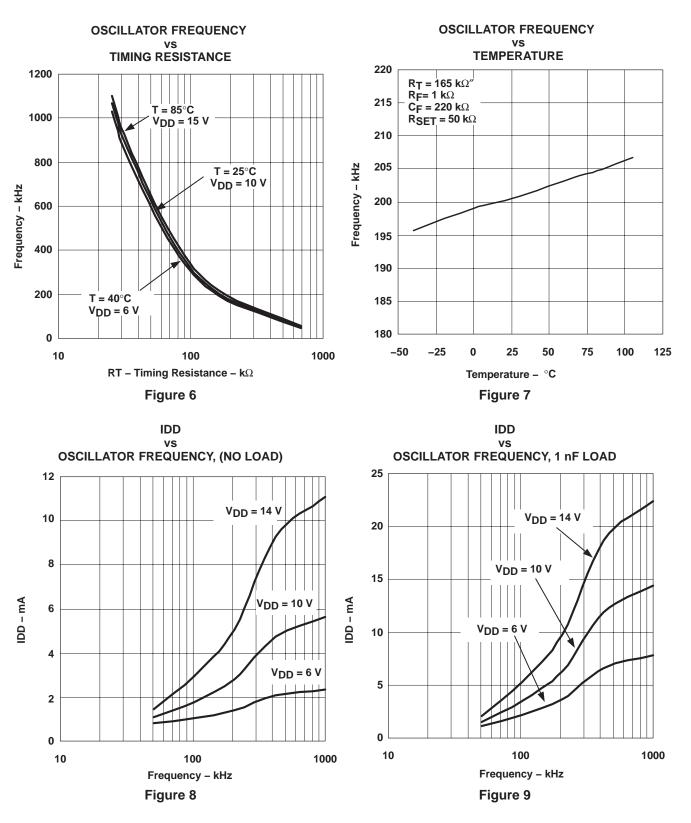
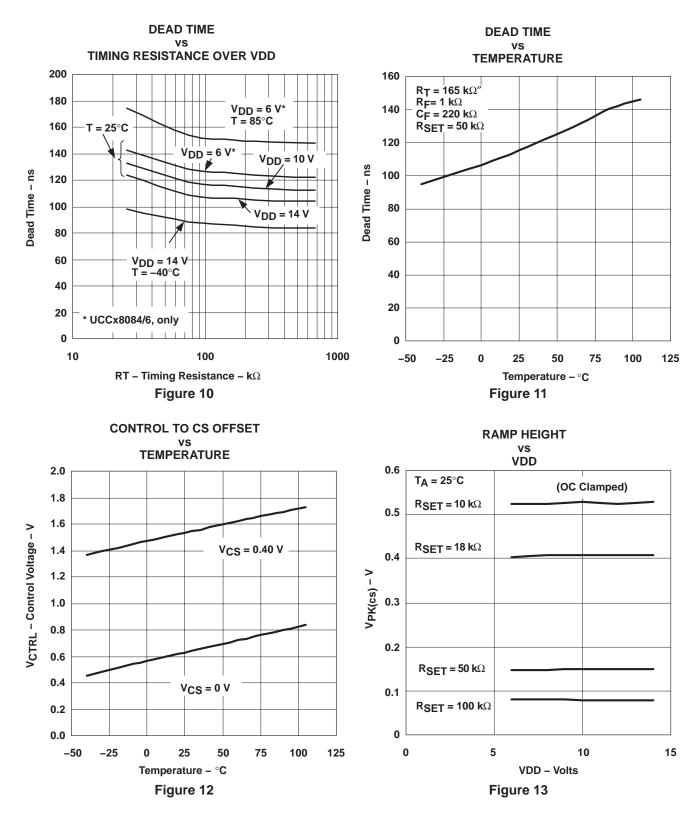



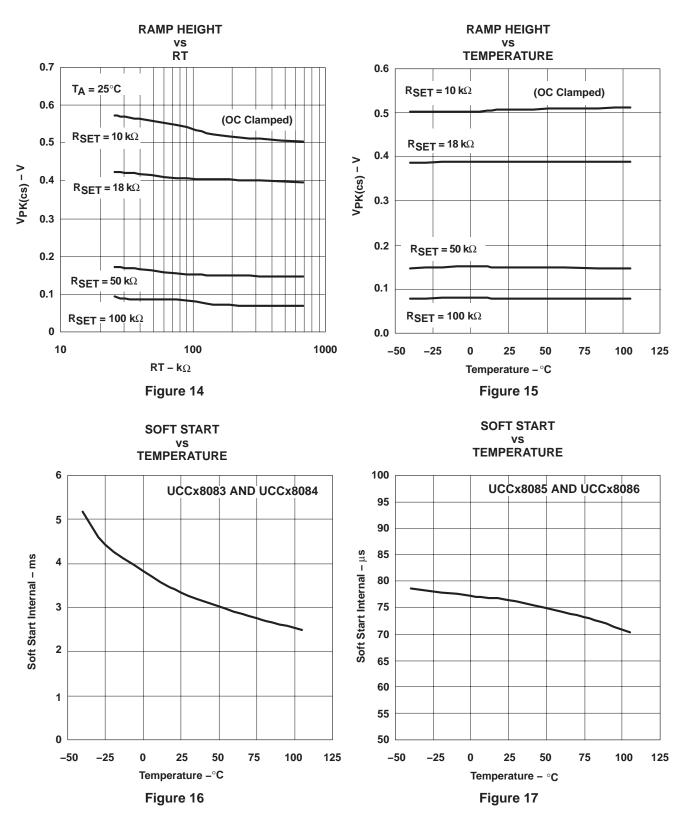
Figure 4. Reference Design Layout

SLUS488E - SEPTEMBER 2002 - REVISED JULY 2009


APPLICATION INFORMATION

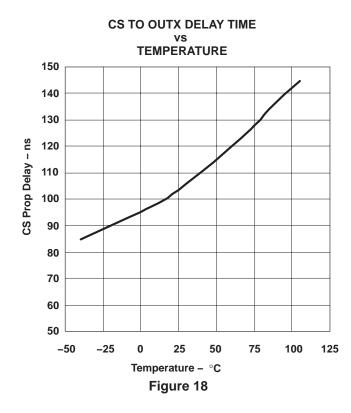

SLUS488E - SEPTEMBER 2002 - REVISED JULY 2009

TYPICAL CHARACTERISTICS


SLUS488E - SEPTEMBER 2002 - REVISED JULY 2009

TYPICAL CHARACTERISTICS

SLUS488E - SEPTEMBER 2002 - REVISED JULY 2009



TYPICAL CHARACTERISTICS

SLUS488E - SEPTEMBER 2002 - REVISED JULY 2009

TYPICAL CHARACTERISTICS

RELATED PRODUCTS

UCC3808, 8-Pin Low Power Current Mode Push-Pull PWM, (SLUS168) UCC3808A, 8-Pin Low-Power Current-Mode Push-Pull PWM, (SLUS456) UCC3806, Low Power, Dual Output, Current Mode PWM Controller, (SLUS272)

Table 1. 8-Pin Push-Pull PWM Controlle	er Family Feature Comparison
--	------------------------------

Part Number	UVLO On	UVLO Off	CS Discharge FET	Error Amplifier	Programmable Slope Compensation	Internal Softstart
UCC38083	12.5 V	8.3 V	Yes	No	Yes	Yes
UCC38084	4.3 V	4.1 V	Yes	No	Yes	Yes
UCC38085	12.5 V	8.3 V	Yes	No	Yes	No
UCC38086	4.3 V	4.1 V	Yes	No	Yes	No
UCC3808A-1	12.5 V	8.3 V	Yes	Yes	No	Yes
UCC3808A-2	4.3 V	4.1 V	Yes	Yes	No	Yes
UCC3808-1	12.5 V	8.3 V	No	Yes	No	Yes
UCC3808-2	4.3 V	4.1 V	No	Yes	No	Yes

19-Feb-2015

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty		Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)					(2)	(6)	(3)		(4/5)	
UCC28083D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	28083	Samples
UCC28083DG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	28083	Samples
UCC28083DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	28083	Samples
UCC28083DRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	28083	Samples
UCC28083P	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	-40 to 85	UCC28083P	Samples
UCC28083PG4	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	-40 to 85	UCC28083P	Samples
UCC28083PW	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	28083	Samples
UCC28084D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	28084	Samples
UCC28084DG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	28084	Samples
UCC28084DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	28084	Samples
UCC28084DRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	28084	Samples
UCC28084P	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	-40 to 85	UCC28084P	Samples
UCC28084PW	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	28084	Samples
UCC28084PWG4	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	28084	Samples
UCC28084PWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	28084	Samples
UCC28084PWRG4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	28084	Samples
UCC28085D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	28085	Samples

PACKAGE OPTION ADDENDUM

19-Feb-2015

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
UCC28085DG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	28085	Samples
UCC28085DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	28085	Samples
UCC28085P	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	-40 to 85	UCC28085P	Samples
UCC28085PW	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	28085	Samples
UCC28086D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	28086	Samples
UCC28086DG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	28086	Samples
UCC28086DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	28086	Samples
UCC28086P	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	-40 to 85	UCC28086P	Samples
UCC28086PW	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	28086	Samples
UCC28086PWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	28086	Samples
UCC38083D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	38083	Samples
UCC38083DG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	38083	Samples
UCC38083DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	38083	Samples
UCC38083P	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	0 to 70	UCC38083P	Samples
UCC38084D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	38084	Samples
UCC38084DG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	38084	Samples
UCC38084DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	38084	Samples
UCC38084DRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	38084	Samples

19-Feb-2015

Orderable Device	Status	Package Type	Package Drawing	Pins	•	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
UCC38084P	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	0 to 70	UCC38084P	Samples
UCC38084PG4	ACTIVE	PDIP	Ρ	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	0 to 70	UCC38084P	Samples
UCC38084PW	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	0 to 70	38084	Samples
UCC38084PWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	0 to 70	38084	Samples
UCC38084PWRG4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	0 to 70	38084	Samples
UCC38085D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	38085	Samples
UCC38085P	ACTIVE	PDIP	Ρ	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	0 to 70	UCC38085P	Samples
UCC38086D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	38086	Samples
UCC38086DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	38086	Samples
UCC38086P	ACTIVE	PDIP	Ρ	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	0 to 70	UCC38086P	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

www.ti.com

19-Feb-2015

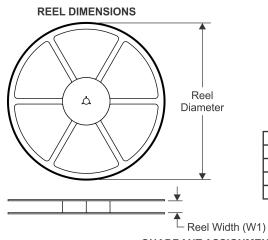
⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

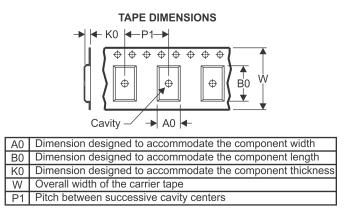
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

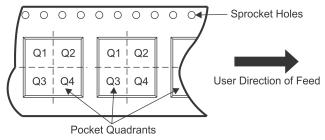
⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

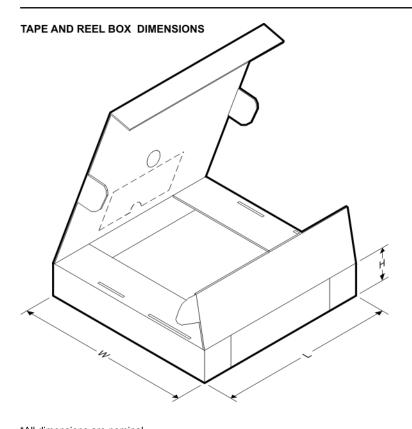

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

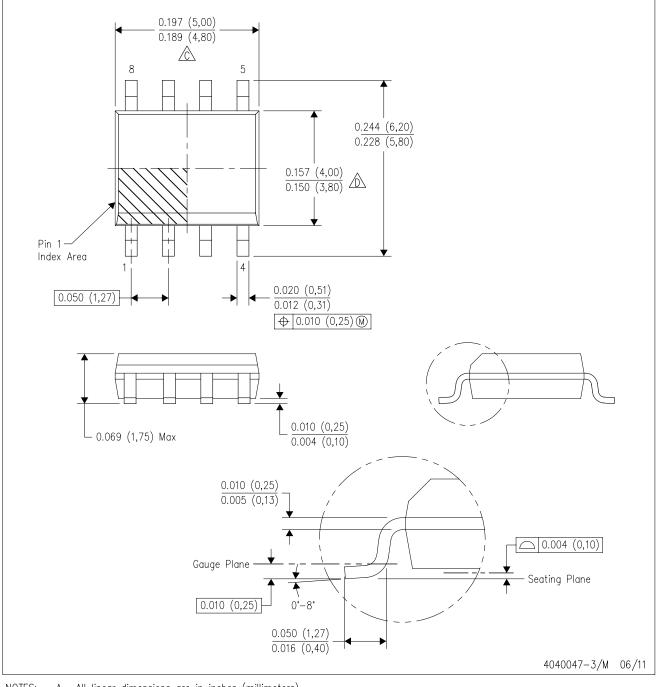
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
UCC28083DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
UCC28084DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
UCC28084PWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
UCC28085DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
UCC28086DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
UCC28086PWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
UCC38083DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
UCC38084DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
UCC38084PWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
UCC38086DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

Texas Instruments

www.ti.com

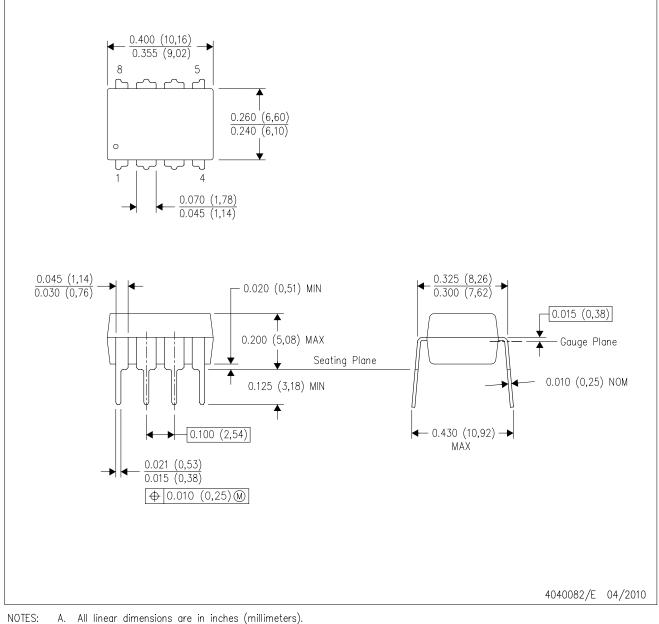
PACKAGE MATERIALS INFORMATION


3-Aug-2017

*All dimensions are nominal							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
UCC28083DR	SOIC	D	8	2500	340.5	338.1	20.6
UCC28084DR	SOIC	D	8	2500	340.5	338.1	20.6
UCC28084PWR	TSSOP	PW	8	2000	367.0	367.0	35.0
UCC28085DR	SOIC	D	8	2500	340.5	338.1	20.6
UCC28086DR	SOIC	D	8	2500	340.5	338.1	20.6
UCC28086PWR	TSSOP	PW	8	2000	367.0	367.0	35.0
UCC38083DR	SOIC	D	8	2500	340.5	338.1	20.6
UCC38084DR	SOIC	D	8	2500	340.5	338.1	20.6
UCC38084PWR	TSSOP	PW	8	2000	367.0	367.0	35.0
UCC38086DR	SOIC	D	8	2500	340.5	338.1	20.6

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

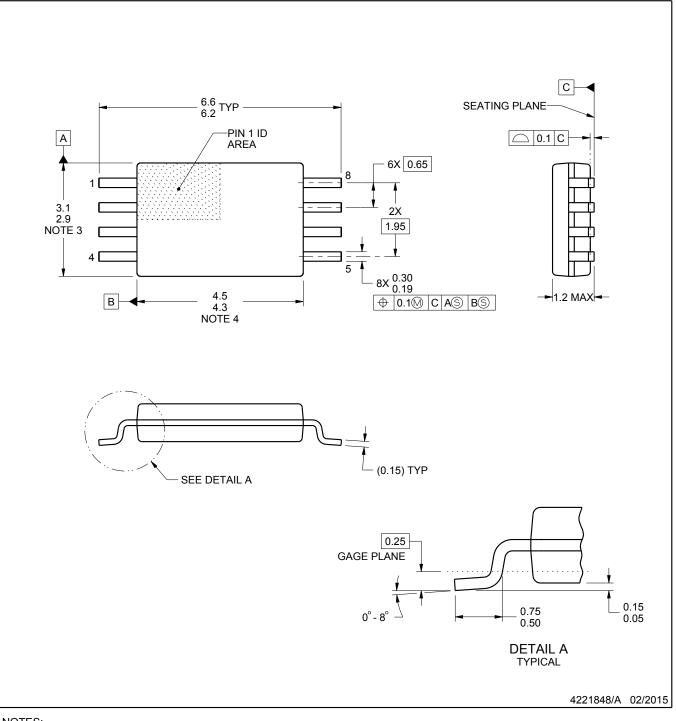

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

P(R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.


PW0008A

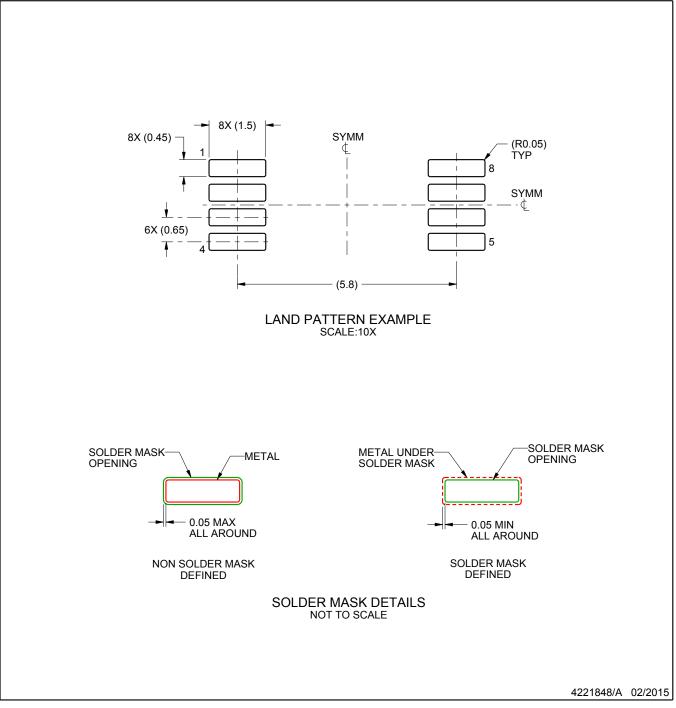
PACKAGE OUTLINE

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153, variation AA.



PW0008A

EXAMPLE BOARD LAYOUT

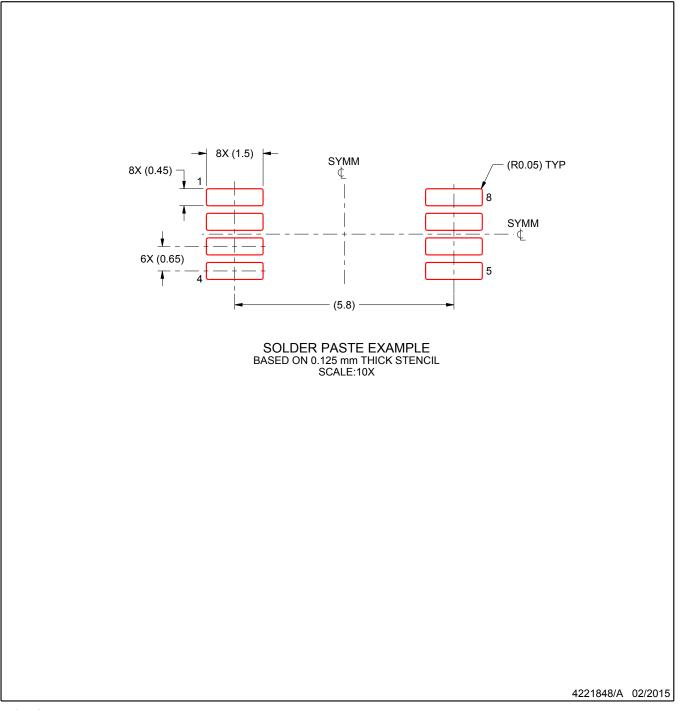
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



PW0008A

EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

9. Board assembly site may have different recommendations for stencil design.

^{8.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated