

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lay bed ON Semiconductor and its officers, employees, ween if such claim alleges that ON Semiconductor was negligent regarding the d

FAIRCHILD

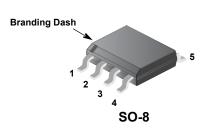
SEMICONDUCTOR®

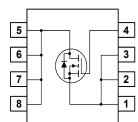
FDS8870 N-Channel PowerTrench[®] MOSFET

30V, 18A, 4.2m Ω

Features

- r_{DS(on)} = 4.2mΩ, V_{GS} = 10V, I_D = 18A
- r_{DS(on)} = 4.9mΩ, V_{GS} = 4.5V, I_D = 17A
- High performance trench technology for extremely low r_{DS(on)}
- Low gate charge
- High power and current handling capability
- RoHS Compliant




General Description

This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low $r_{DS(on)}$ and fast switching speed.

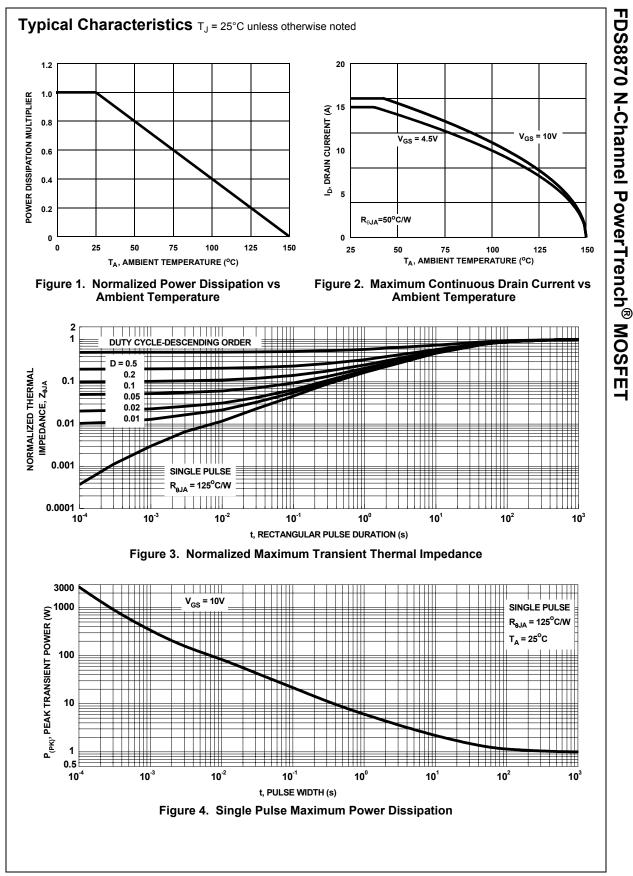
Applications

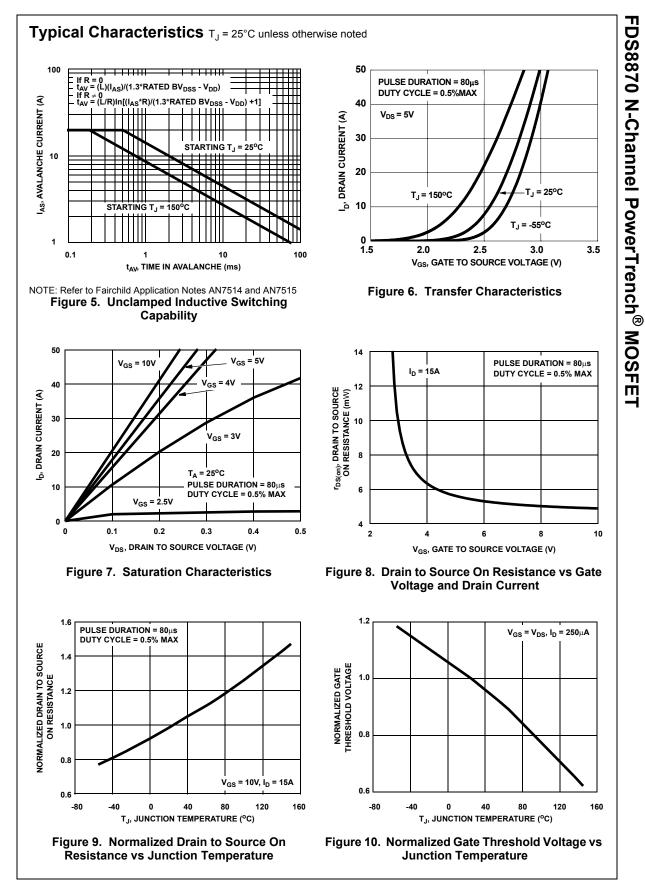
DC/DC converters

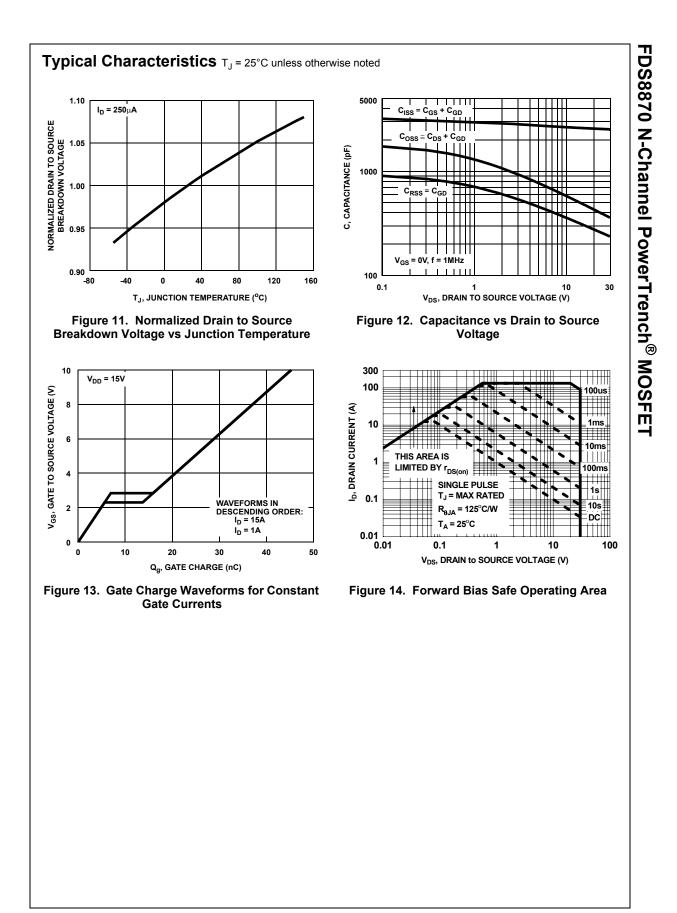
April 2007

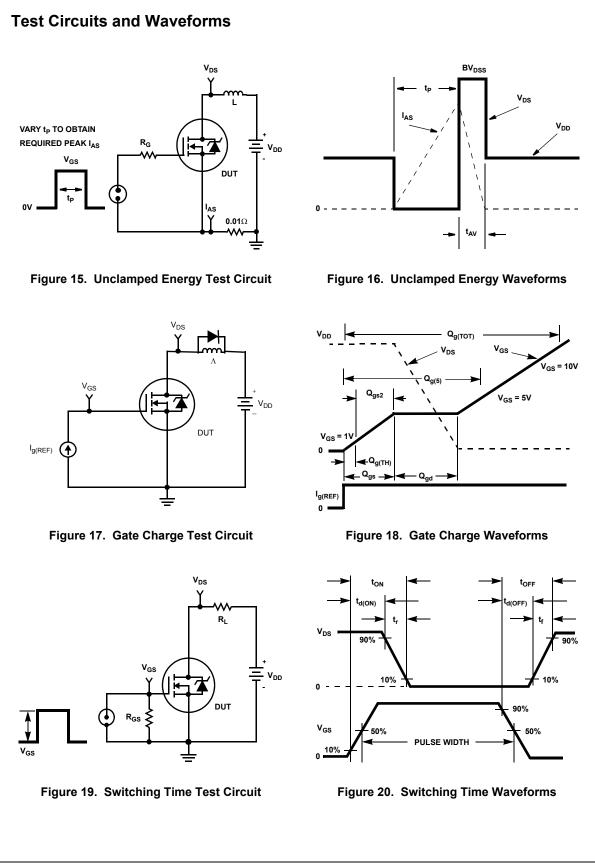
1

Symbol		Parame	ter		Ratings			Units	
V _{DSS}	Drain to Source Voltage			30			V		
V _{GS}	Gate to Source Voltage			±20			V		
		Drain Current							
I_		us (T _A = 25°C, V _{GS} = 10V, R			18			Α	
I _D	Continuou	us (T _A = 25°C, V _{GS} = 4.5V, F	$R_{\theta JA} = 50^{\circ}C/W$			17		A	
	Pulsed				134			Α	
E _{AS}	Single Pulse Avalanche Energy (Note 1)			420			mJ		
P _D	Power dissipation				2.5			W	
	Derate above 25°C				20			mW/ ^c	
T _J , T _{STG}	Operating	and Storage Temperature				-55 to 150)	°C	
Therma	Chara	cteristics							
$R_{ ext{ heta}JC}$	Thermal F	Resistance, Junction to Case	e (Note 2)			25		°C/W	
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient (Note 2a)					50		°C/V	
$R_{ hetaJA}$	Thermal F	Resistance, Junction to Amb	ient (Note 2b)			125		°C/V	
Package	e Marki	ng and Ordering I	nformatio	n					
Device N	larking	Device	Package	Reel Size	Tape	e Width Qu		uantity	
FDS8	-	FDS8870	SO-8	330mm	12r		2500 units		
Symbol	ctorictic	Parameter	Test	Conditions	Min	Тур	Max	Unit	
Off Chara B _{VDSS}	-	source Breakdown Voltage	I _D = 250μA,	$V_{00} = 0V$	30	-	_	V	
20055			V _{DS} = 24V	·GS OF	-	-	1	•	
I _{DSS}	Zero Gate	e Voltage Drain Current	V _{GS} = 0V	T _J = 150 ^o C	-	-	250	μA	
I _{GSS}	Gate to S	ource Leakage Current	V _{GS} = ±20V		-	-	±100	nA	
On Chara	cteristics	5							
V _{GS(TH)}	Gate to S	ource Threshold Voltage	V _{GS} = V _{DS} ,	I _D = 250μA	1.2	-	2.5	V	
00(11)	• •		I _D = 18A, V _{GS} = 10V		-	3.5	4.2		
r	Drain to S	ource On Resistance	I _D = 17A, V ₀		-	3.9	4.9	mΩ	
r _{DS(on)}	Diamito S	ource on Resistance	I _D = 18A, V ₀ T _{.1} = 150 ^o C	I _D = 18A, V _{GS} = 10V,		5.5	7.2	1115.2	
				_	0.0	1.2			
Dynamic	-								
C _{ISS}	Input Cap		V = 15V	$V_{00} = 0 V$	-	4615	-	pF	
C _{OSS}		apacitance	──V _{DS} = 15V, V _{GS} = 0V, f = 1MHz		-	900	-	pF	
C _{RSS}		Fransfer Capacitance			-	450	-	pF	
R _G	Gate Res		V _{GS} = 0.5V,		0.5	2.0	3.5	Ω	
Q _{g(TOT)}		Charge at 10V	$V_{GS} = 0V to$	10V	-	85	112	nC	
Q _{g(5)}		Charge at 5V	$V_{GS} = 0V to$	$5V$ $V_{DD} = 15V$ $I_D = 18A$	-	45	62	nC	
Q _{g(TH)}		Gate Charge	$V_{GS} = 0V$ to	$1V$ $I_g = 1.0mA$	-	4.6	6.0	nC	
Q _{gs}		ource Gate Charge		J.	-	11	-	nC	
	Gate Cha	rge Threshold to Plateau			-	6.4	-	nC	
Q _{gs2} Q _{gd}		rain "Miller" Charge				15		nC	


Switchi	Switching Characteristics (V _{GS} = 10V)							
t _{ON}	Turn-On Time		-	-	86	ns		
t _{d(ON)}	Turn-On Delay Time		-	9	-	ns		
t _r	Rise Time	V _{DD} = 15V, I _D = 18A	-	48	-	ns		
t _{d(OFF)}	Turn-Off Delay Time	V_{DD} = 15V, I _D = 18A V _{GS} = 10V, R _{GS} = 3.3Ω	-	60	-	ns		
t _f	Fall Time		-	21	-	ns		
t _{OFF}	Turn-Off Time		-	-	122	ns		


Drain-Source Diode Characteristics


V _{SD}		I _{SD} = 18A	-	-	1.25	V
	Source to Drain Diode Voltage	I _{SD} = 2.1A	-	-	1.0	V
t _{rr}	Reverse Recovery Time	I_{SD} = 18A, d I_{SD} /dt = 100A/µs	-	-	37	ns
Q_{RR}	Reverse Recovered Charge	I_{SD} = 18A, d I_{SD} /dt = 100A/µs	-	-	22	nC


Notes:
1: Starting T_J = 25°C, L = 1mH, I_{AS} = 29A, V_{DD} = 30V, V_{GS} = 10V.
2: R_{0JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{0JC} is guaranteed by design while R_{0JA} is determined by the user's board design.
a) 50°C/W when mounted on a 11n² pad of 2 oz copper.

b) 125°C/W when mounted on a minimum pad.

FDS8870 N-Channel PowerTrench[®] MOSFET

Thermal Resistance vs. Mounting Pad Area

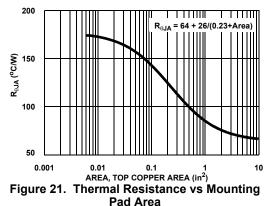
The maximum rated junction temperature, T_{JM} , and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, P_{DM} , in an application. Therefore the application's ambient temperature, T_A (°C), and thermal resistance $R_{\theta JA}$ (°C/W) must be reviewed to ensure that T_{JM} is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part.

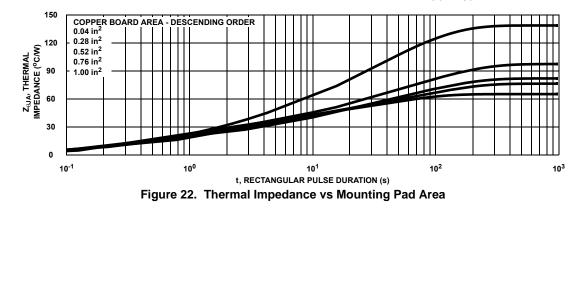
$$P_{DM} = \frac{(T_{JM} - T_A)}{R_{\theta JA}}$$
(EQ. 1)

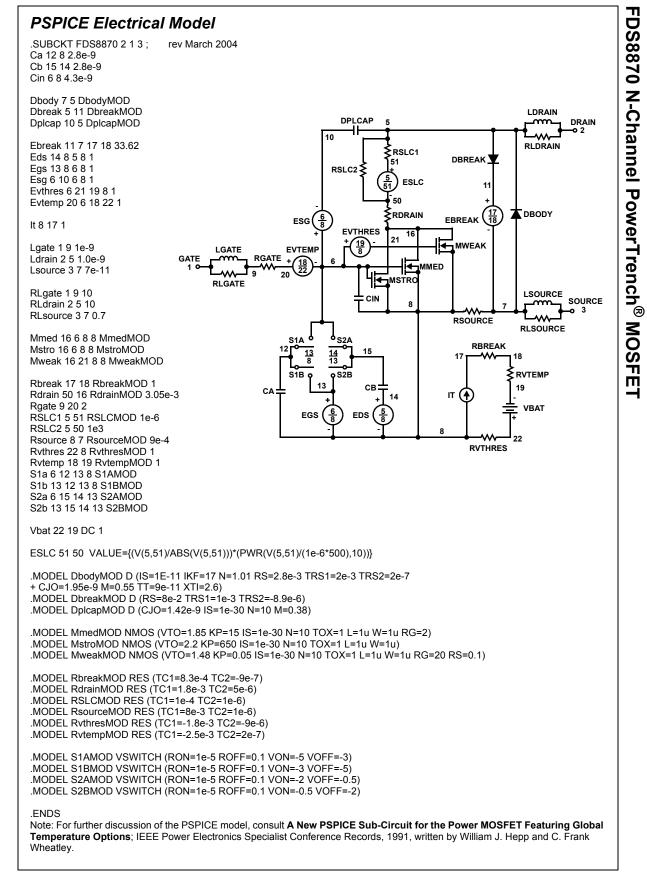
In using surface mount devices such as the SO8 package, the environment in which it is applied will have a significant influence on the part's current and maximum power dissipation ratings. Precise determination of P_{DM} is complex and influenced by many factors:

- Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board.
- 2. The number of copper layers and the thickness of the board.
- 3. The use of external heat sinks.
- 4. The use of thermal vias.
- 5. Air flow and board orientation.
- For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in.

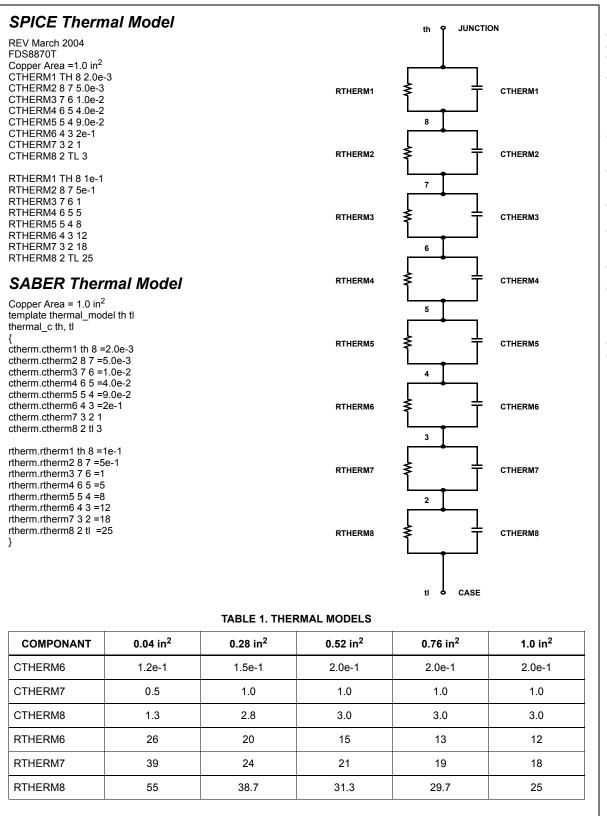
Fairchild provides thermal information to assist the designer's preliminary application evaluation. Figure 21 defines the $R_{\theta JA}$ for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized maximum transient


thermal impedance curve.


Thermal resistances corresponding to other copper areas can be obtained from Figure 21 or by calculation using Equation 2. The area, in square inches is the top copper area including the gate and source pads.


$$R_{\theta JA} = 64 + \frac{26}{0.23 + Area}$$
 (EQ. 2)

The transient thermal impedance (Z_{0JA}) is also effected by varied top copper board area. Figure 22 shows the effect of copper pad area on single pulse transient thermal impedance. Each trace represents a copper pad area in square inches corresponding to the descending list in the graph. Spice and SABER thermal models are provided for each of the listed pad areas.


Copper pad area has no perceivable effect on transient thermal impedance for pulse widths less than 100ms. For pulse widths less than 100ms the transient thermal impedance is determined by the die and package. Therefore, CTHERM1 through CTHERM5 and RTHERM1 through RTHERM5 remain constant for each of the thermal models. A listing of the model component values is available in Table 1.

П SABER Electrical Model DS8870 N-Channel PowerTrench[®] MOSFET REV March 2004 template FDS8870 n2,n1,n3 electrical n2,n1,n3 var i iscl dp..model dbodymod = (isl=1e-11,ikf=17,nl=1.01,rs=2.8e-3,trs1=2e-3,trs2=2e-7,cjo=1.95e-9,m=0.55,tt=9e-11,xti=2.6) dp..model dbreakmod = (rs=8e-2.trs1=1e-3.trs2=-8.9e-6)dp..model dplcapmod = (cjo=1.42e-9,isl=10e-30,nl=10,m=0.38) m..model mmedmod = (type=_n,vto=1.85,kp=15,is=1e-30, tox=1) m..model mstrongmod = (type=_n,vto=2.2,kp=650,is=1e-30, tox=1) m.model mweakmod = $(type=_n, vto=1.48, kp=0.05, is=1e-30, tox=1, rs=0.1)$ sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-5,voff=-3) LDRAIN sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-3,voff=-5) DPLCAP DRAIN sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-2,voff=-0.5) 10 sw vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=-0.5,voff=-2) RLDRAIN ERSI C1 c.ca n12 n8 = 2.8e-9 c.cb n15 n14 = 2.8e-9 51 RSLC2 > c.cin n6 n8 = 4.3e-9 Ŧ ISCL dp.dbody n7 n5 = model=dbodymod 50 DBREAK dp.dbreak n5 n11 = model=dbreakmod €rdrain <u>6</u> 8 ESG 11 dp.dplcap n10 n5 = model=dplcapmod DBODY EVTHRES 16 21 spe.ebreak n11 n7 n17 n18 = 33.62 <u>19</u> 8 MWEAK LGATE EVTEMP spe.eds n14 n8 n5 n8 = 1 GATE RGATE ■_____MMED EBREAK 18 22 spe.egs n13 n8 n6 n8 = 1 \sim 9 20 spe.esg n6 n10 n6 n8 = 1 RLGATE spe.evthres n6 n21 n19 n8 = 1 LSOURCE CIN SOURCE spe.evtemp n20 n6 n18 n22 = 1 8 3 • RSOURCE i.it n8 n17 = 1 RLSOURCE I.lgate n1 n9 = 1e-9 RBRFAK <u>14</u> 13 15 13 I.Idrain n2 n5 = 1.0e-9 17 18 l.lsource n3 n7 = 7e-11 RVTEMP S2B 13 CB 19 res.rlgate n1 n9 = 10 CA IT 14 (🔺 res.rldrain n2 n5 = 10 VBAT res.rlsource n3 n7 = 0.7 EGS EDS 5 m.mmed n16 n6 n8 n8 = model=mmedmod, I=1u, w=1u 22 m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u RVTHRES m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u res.rbreak n17 n18 = 1, tc1=8.3e-4,tc2=-9e-7 res.rdrain n50 n16 = 3.05e-3, tc1=1.8e-3,tc2=5e-6 res.rgate n9 n20 = 2 res.rslc1 n5 n51 = 1e-6, tc1=1e-4,tc2=1e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 9e-4, tc1=8e-3,tc2=1e-6 res.rvthres n22 n8 = 1, tc1=-1.8e-3,tc2=-9e-6 res.rvtemp n18 n19 = 1, tc1=-2.5e-3,tc2=2e-7 sw vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/500))** 10)) }

DS8870 N-Channel PowerTrench[®] MOSFET

П

©2007 Fairchild Semiconductor Corporation FDS8870 Rev. B

SEMICONDUCTOR

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx® Across the board. Around the world™ ActiveArray™ Bottomless™ Build it Now™ CoolFET™ CROSSVOLT™ CTL™ Current Transfer Logic™ DOME™ E²CMOS™ EcoSPARK[®] EnSigna™ FACT Quiet Series™ FACT® $\mathsf{FAST}^{\mathbb{R}}$ FASTr™ FPS™ FRFET® GlobalOptoisolator™ GTO™ HiSeC™

i-Lo™ ImpliedDisconnect[™] IntelliMAX[™] ISOPLANAR™ MICROCOUPLER™ MicroPak™ MICROWIRE™ Motion-SPM™ MSX™ MSXPro™ OCX™ OCXPro™ **OPTOLOGIC**[®] **OPTOPLANAR[®]** PACMAN™ PDP-SPM™ POP™ Power220[®] Power247[®] PowerEdae™ PowerSaver™

 $\mathsf{PowerTrench}^{\mathbb{R}}$ Programmable Active Droop™ QFET® QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ RapidConnect™ ScalarPump™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TCM™ The Power Franchise[®] ს ™

Power-SPM™

TinyBoost™ TinyBuck™ TinyLogic® TINYOPTO™ TinyPower™ TinyWire™ TruTranslation™ µSerDes™ UHC® UniFET™ VCX™ Wire™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the leading age be reaccordence by ourgeted to reput to a classificant the labeling, can be reasonably expected to result in a significant injury of the user.

2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition		
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed Full Production		This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.		

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC