Parameter	Rating	Units
Blocking Voltage	350	$\mathrm{~V}_{\mathrm{P}}$
Load Current	120	$\mathrm{~mA}_{\mathrm{rms}} / \mathrm{mA}_{\mathrm{DC}}$
On-Resistance (max)	35	Ω

Features

- $1500 \mathrm{~V}_{\text {rms }}$ Input/Output Isolation
- Low Drive Power Requirements
- High Reliability
- Arc-Free With No Snubbing Circuits
- No EMI/RFI Generation
- Small 4-Pin SOP Package
- Tape \& Reel Version Available
- Flammability Rating UL 94 V-0

Applications

- Telecommunications
- Telecom Switching
- Tip/Ring Circuits
- Modem Switching (Laptop, Notebook, Pocket Size)
- Hook Switch
- Dial Pulsing
- Ground Start
- Ringing Injection
- Instrumentation
- Multiplexers
- Data Acquisition
- Electronic Switching
- I/O Subsystems
- Meters (Watt-Hour, Water, Gas)
- Medical Equipment-Patient/Equipment Isolation
- Security
- Aerospace
- Industrial Controls

Description

The CPC1135N is a miniature, normally-closed, single-pole (1-Form-B) solid state relay that uses optically coupled MOSFET technology to provide $1500 \mathrm{~V}_{\text {rms }}$ of input to output isolation.

Its optically coupled output, which uses the patented OptoMOS architecture, is controlled by a highly efficient infrared LED.

IXYS Integrated Circuits' state of the art doublemolded vertical construction packaging enables the CPC1135N to be one of the world's smallest 4-pin solid state relays. It offers board space savings over the competitor's larger 4-pin SOP relay.

Approvals

- UL Recognized Component: File E76270
- CSA Certified Component: Certificate 1172007
- EN/IEC 60950-1 Certified Component: Certificate available on our website

Ordering Information

Part \#	Description
CPC1135N	4-Pin SOP (100/tube)
CPC1135NTR	4-Pin SOP (2000/reel)

Pin Configuration

Switching Characteristics of Normally-Closed Devices

e3)

Absolute Maximum Ratings @ $25^{\circ} \mathrm{C}$

Parameter	Ratings	Units
Blocking Voltage	350	$\mathrm{~V}_{\mathrm{p}}$
Reverse Input Voltage	5	V
Input Control Current Peak (10ms)	50	mA
	1	A
Input Power Dissipation ${ }^{1}$	150	mW
Total Power Dissipation ${ }^{2}$	400	mW
Capacitance, Input to Output	1	pF
Isolation Voltage, Input to Output	1500	$\mathrm{~V}_{\text {rms }}$
Operational Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	-40 to +125	${ }^{\circ} \mathrm{C}$

Derate linearly $1.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
${ }^{2}$ Derate linearly $3.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are stress ratings. Stresses in excess of these ratings can cause permanent damage to the device. Functional operation of the device at conditions beyond those indicated in the operational sections of this data sheet is not implied.

Typical values are characteristic of the device at $+25^{\circ} \mathrm{C}$, and are the result of engineering evaluations. They are provided for information purposes only, and are not part of the manufacturing testing requirements.

Electrical Characteristics @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Parameter	Conditions	Symbol	Min	Tур	Max	Units
Output Characteristics						
Load Current						
Continuous ${ }^{1}$	-	I_{L}	-	-	120	$m A_{\text {rms }} / m A_{\text {DC }}$
Peak	$\mathrm{t}=10 \mathrm{~ms}$	LLPK	-	-	± 350	$m A_{p}$
On-Resistance ${ }^{2}$	$\mathrm{I}_{\mathrm{L}}=120 \mathrm{~mA}$	$\mathrm{R}_{\text {ON }}$	-	-	35	Ω
Off-State Leakage Current	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{L}}=350 \mathrm{~V}_{\mathrm{P}}$	$\mathrm{I}_{\text {LEAK }}$	-	-	5	$\mu \mathrm{A}$
Switching Speeds						
Turn-On	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{L}}=10 \mathrm{~V}$	$\mathrm{t}_{\text {on }}$	-	-	2	ms
Turn-Off		$\mathrm{t}_{\text {off }}$	-	-	2	
Output Capacitance	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{L}}=50 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{C}_{\text {OUT }}$	-	25	-	pF
Input Characteristics						
Input Control Current to Activate ${ }^{3}$	$\mathrm{I}_{\mathrm{L}}=120 \mathrm{~mA}$	I_{F}	-	0.6	2	mA
Input Control Current to Deactivate	-	I_{F}	0.3	0.55	-	mA
Input Voltage Drop	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	V_{F}	0.9	1.2	1.5	V
Reverse Input Current	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$	$\mathrm{I}_{\text {R }}$	-	-	10	$\mu \mathrm{A}$

[^0]2 Measurement taken within 1 second of on-time.
3 For applications requiring high temperature operation (greater than $60^{\circ} \mathrm{C}$) a minimum LED drive current of 4 mA is recomended.

PERFORMANCE DATA*

Typical Turn-On Time

Typical Blocking Voltage Distribution

Typical I_{F} for Switch Operation

vs. Temperature

Typical I_{F} for Switch Operation ($\mathrm{N}=50, \mathrm{I}_{\mathrm{L}}=120 \mathrm{~mA}$)

Typical I_{F} for Switch Dropout $\left(\mathrm{N}=50, \mathrm{I}_{\mathrm{L}}=120 \mathrm{~mA}\right)$

硅

Typical LED Forward Voltage Drop
vs. Temperature

[^1]PERFORMANCE DATA*

Manufacturing Information
Moisture Sensitivity
All plastic encapsulated semiconductor packages are susceptible to moisture ingression. IXYS Integrated Circuits classifies its plastic encapsulated devices for moisture sensitivity according to the latest version of the joint industry standard, IPC/JEDEC J-STD-020, in force at the time of product evaluation. We test all of our products to the maximum conditions set forth in the standard, and guarantee proper operation of our devices when handled according to the limitations and information in that standard as well as to any limitations set forth in the information or standards referenced below.

Failure to adhere to the warnings or limitations as established by the listed specifications could result in reduced product performance, reduction of operable life, and/or reduction of overall reliability.

This product carries a Moisture Sensitivity Level (MSL) classification as shown below, and should be handled according to the requirements of the latest version of the joint industry standard IPC/JEDEC J-STD-033.

Device	Moisture Sensitivity Level (MSL) Classification
CPC1135N	MSL 3

ESD Sensitivity

This product is ESD Sensitive, and should be handled according to the industry standard JESD-625.

Soldering Profile

Provided in the table below is the Classification Temperature $\left(T_{C}\right)$ of this product and the maximum dwell time the body temperature of this device may be $\left(T_{C}-5\right)^{\circ} \mathrm{C}$ or greater. The classification temperature sets the Maximum Body Temperature allowed for this device during lead-free reflow processes. For through-hole devices, and any other processes, the guidelines of J-STD-020 must be observed.

Device	Classification Temperature (T_{c})	Dwell Time (t_{p})	Max Reflow Cycles
CPC1135N	$260^{\circ} \mathrm{C}$	30 seconds	3

Board Wash

IXYS Integrated Circuits recommends the use of no-clean flux formulations. Board washing to reduce or remove flux residue following the solder reflow process is acceptable provided proper precautions are taken to prevent damage to the device. These precautions include, but are not limited to: using a low pressure wash and providing a follow up bake cycle sufficient to remove any moisture trapped within the device due to the washing process. Due to the variability of the wash parameters used to clean the board, determination of the bake temperature and duration necessary to remove the moisture trapped within the package is the responsibility of the user (assembler). Cleaning or drying methods that employ ultrasonic energy may damage the device and should not be used. Additionally, the device must not be exposed to flux or solvents that are Chlorine- or Fluorine-based.

CPC1135N

Mechanical Dimensions

CPC1135NTR Tape \& Reel

For additional information please visit our website at: www.ixysic.com

IXYS Integrated Circuits makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. Neither circuit patent licenses nor indemnity are expressed or implied. Except as set forth in IXYS Integrated Circuits' Standard Terms and Conditions of Sale, IXYS Integrated Circuits assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right.

The products described in this document are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or where malfunction of IXYS Integrated Circuits' product may result in direct physical harm, injury, or death to a person or severe property or environmental damage. IXYS Integrated Circuits reserves the right to discontinue or make changes to its products at any time without notice.

Specification: DS-CPC1135N-R09
©Copyright 2018, IXYS Integrated Circuits
OptoMOS® is a registered trademark of IXYS Integrated Circuits
All rights reserved. Printed in USA.
6/14/2018

[^0]: 1 Load current derates linearly from $120 \mathrm{~mA} @ 25^{\circ} \mathrm{C}$ to $80 \mathrm{~mA} @ 85^{\circ} \mathrm{C}$.

[^1]: