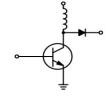


An IATF 16949, ISO9001 and ISO 14001 Certified Company




**BUX48 BUX48A** 

#### NPN Silicon Power Transistor

15 AMPERES, 400 and 450 VOLTS, 175 WATTS





TO-3
Metal Can Package
RoHS compliant

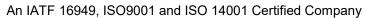
#### **FEATURES:**

The BUX 48/BUX 48A transistors are designed for high–voltage, high–speed, power switching in inductive circuits where fall time is critical. They are particularly suited for line–operated circuits.

Fast Turn-Off Times

60 ns Inductive Fall Time - 25° C (Typ) 120 ns Inductive Crossover Time - 25° C (Typ)

Operating Temperature Range -65 to +200° C


100° C Performance Specified for:

Reverse–Biased SOA with Inductive Loads Switching Times with Inductive Loads Saturation Voltage Leakage Currents (125° C)

#### **APPLICATIONS:**

- 1. Switching Regulators
- 2. Inverters
- 3. Solenoid and Relay Drivers
- 4. Motor Controls
- 5. Deflection Circuits

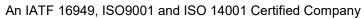








## **ABSOLUTE MAXIMUM RATINGS** (T<sub>a</sub> = 25 °C)


| Rating                                                                                       | Symbol                            | BUX48           | BUX48A | Unit          |
|----------------------------------------------------------------------------------------------|-----------------------------------|-----------------|--------|---------------|
| Collector–Emitter Voltage                                                                    | V <sub>CEO(sus)</sub>             | 400             | 450    | Vdc           |
| Collector–Emitter Voltage (V <sub>BE</sub> = – 1.5 V)                                        | VCEX                              | 850             | 1000   | Vdc           |
| Emitter Base Voltage                                                                         | V <sub>EB</sub>                   | 7               |        | Vdc           |
| Collector Current — Continuous<br>— Peak (1)<br>— Overload                                   | IC<br>ICM<br>IOI                  | 15<br>30<br>60  |        | Adc           |
| Base Current — Continuous<br>— Peak (1)                                                      | I <sub>B</sub><br>I <sub>BM</sub> | 5<br>20         |        | Adc           |
| Total Power Dissipation — $T_C = 25^{\circ}C$<br>— $T_C = 100^{\circ}C$<br>Derate above 25°C | P <sub>D</sub>                    | 175<br>100<br>1 |        | Watts<br>W/°C |
| Operating and Storage Junction Temperature Range                                             | T <sub>J</sub> , T <sub>stg</sub> | -65 t           | 0 +200 | °C            |

#### THERMAL CHARACTERISTICS

| Characteristic                                                                | Symbol | Max | Unit |
|-------------------------------------------------------------------------------|--------|-----|------|
| Thermal Resistance, Junction to Case                                          | R JC   | 1   | °C/W |
| Maximum Lead Temperature for Soldering Purposes:  1/8 from Case for 5 Seconds | TL     | 275 | °C   |

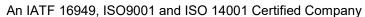
<sup>(1)</sup> Pulse Test: Pulse Width = 5 ms, Duty Cycle ≤ 10%.







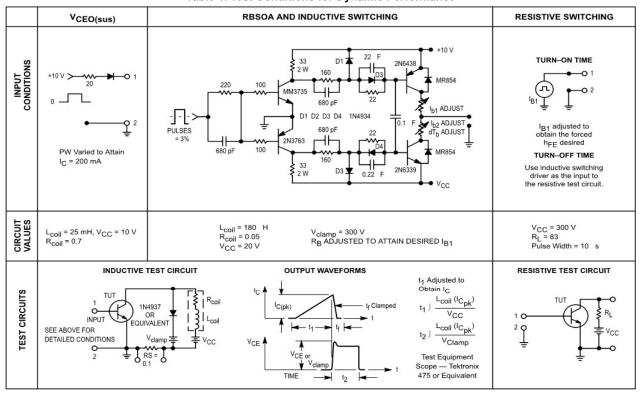



## **ELECTRICAL CHARACTERISTICS** (T<sub>A</sub>=25 ° C unless otherwise specified)

|                                                                                                                                                                                                                                                                                           | Characteristic                                                                                     |             |                                                 | Symbol           | Min        | Тур          | Max                            | Unit |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------|------------------|------------|--------------|--------------------------------|------|
| OFF CHARACTERIST                                                                                                                                                                                                                                                                          | ICS (1)                                                                                            |             |                                                 |                  |            |              |                                |      |
| Collector–Emitter Sus<br>(I <sub>C</sub> = 200 mA, I <sub>B</sub> =                                                                                                                                                                                                                       | staining Voltage (Table 1)<br>0) L = 25 mH                                                         |             | BUX48<br>BUX48A                                 | VCEO(sus)        | 400<br>450 | _            |                                | Vdc  |
| Collector Cutoff Curre<br>(VCEX = Rated Val<br>(VCEX = Rated Val                                                                                                                                                                                                                          | ent<br>lue, V <sub>BE(off)</sub> = 1.5 Vdc)<br>lue, V <sub>BE(off)</sub> = 1.5 Vdc, T <sub>C</sub> | ; = 125°C)  |                                                 | ICEX             | _          | _            | 0.2<br>2                       | mAde |
| Collector Cutoff Curre<br>(VCE = Rated VCE                                                                                                                                                                                                                                                |                                                                                                    |             | T <sub>C</sub> = 25°C<br>T <sub>C</sub> = 125°C | ICER             | _          | =            | 0.5<br>3                       | mAde |
| Emitter Cutoff Curren<br>(V <sub>EB</sub> = 5 Vdc, I <sub>C</sub> =                                                                                                                                                                                                                       |                                                                                                    |             |                                                 | <sup>I</sup> EBO | _          | _            | 0.1                            | mAdd |
| Emitter–Base Breakd<br>(I <sub>E</sub> = 50 mA – I <sub>C</sub> =                                                                                                                                                                                                                         | · · · · · · · · · · · · · · · · · · ·                                                              |             |                                                 | V(BR)EBO         | 7          | _            | _==                            | Vdc  |
| SECOND BREAKDOW                                                                                                                                                                                                                                                                           | /N                                                                                                 |             |                                                 |                  |            |              |                                |      |
| Second Breakdown C                                                                                                                                                                                                                                                                        | Collector Current with Base                                                                        | Forward Bi  | ased                                            | I <sub>S/b</sub> | 5          | See Figure 1 | 2                              |      |
| Clamped Inductive So                                                                                                                                                                                                                                                                      | OA with Base Reverse Bias                                                                          | sed         |                                                 | RBSOA            | 5          | See Figure 1 | 3                              |      |
| ON CHARACTERISTIC                                                                                                                                                                                                                                                                         | CS (1)                                                                                             |             |                                                 |                  |            |              |                                |      |
| DC Current Gain<br>(I <sub>C</sub> = 10 Adc, V <sub>CE</sub><br>(I <sub>C</sub> = 8 Adc, V <sub>CE</sub> =                                                                                                                                                                                |                                                                                                    |             | BUX48<br>BUX48A                                 | hFE              | 8          |              |                                |      |
| (I <sub>C</sub> = 8 Adc, I <sub>B</sub> = 1.<br>(I <sub>C</sub> = 12 Adc, I <sub>B</sub> = 2.                                                                                                                                                                                             | 2 Adc)<br>3 Adc)<br>2 Adc, T <sub>C</sub> = 100°C)<br>6 Adc)                                       |             | BUX48<br>BUX48A                                 | VCE(sat)         | 111111     |              | 1.5<br>5<br>2<br>1.5<br>5<br>2 | Vdc  |
| Base–Emitter Saturation Voltage (I <sub>C</sub> = 10 Adc, I <sub>B</sub> = 2 Adc) (I <sub>C</sub> = 10 Adc, I <sub>B</sub> = 2 Adc, T <sub>C</sub> = 100°C) (I <sub>C</sub> = 8 Adc, I <sub>B</sub> = 1.6 Adc) (I <sub>C</sub> = 8 Adc, I <sub>B</sub> = 1.6 Adc, T <sub>C</sub> = 100°C) |                                                                                                    |             | BUX48                                           | VBE(sat)         | 1111       |              | 1.6<br>1.6<br>1.6<br>1.6       | Vdc  |
| YNAMIC CHARACTE                                                                                                                                                                                                                                                                           | RISTICS                                                                                            |             |                                                 |                  |            |              |                                |      |
| Output Capacitance<br>(V <sub>CB</sub> = 10 Vdc, I <sub>E</sub>                                                                                                                                                                                                                           | = 0, f <sub>test</sub> = 1 MHz)                                                                    |             |                                                 | C <sub>ob</sub>  | _          | _            | 350                            | pF   |
| WITCHING CHARAC                                                                                                                                                                                                                                                                           | TERISTICS Resistive Loa                                                                            | ad (Table 1 | )                                               |                  |            |              |                                |      |
| Delay Time                                                                                                                                                                                                                                                                                | I <sub>C</sub> = 10 A, I <sub>B</sub> = 2 A                                                        |             | BUX48                                           | t <sub>d</sub>   | _          | 0.1          | 0.2                            | s    |
| Rise Time                                                                                                                                                                                                                                                                                 | I <sub>C</sub> = 8 A, I <sub>B</sub> = 1.6 A                                                       |             | BUX48A                                          | t <sub>r</sub>   | _          | 0.4          | 0.7                            | ]    |
| Storage Time Duty Cycle = 2%, $V_{BE(off)} = 5 \text{ V}$<br>$T_p = 30 \text{ s, } V_{CC} = 300 \text{ V}$                                                                                                                                                                                |                                                                                                    |             | t <sub>S</sub>                                  |                  | 1.3        | 2            | ╛                              |      |
| Fall Time                                                                                                                                                                                                                                                                                 | .p = 00 0, vCC = 000 v                                                                             |             |                                                 | t <sub>f</sub>   |            | 0.2          | 0.4                            |      |
| nductive Load, Clam                                                                                                                                                                                                                                                                       | ped (Table 1)                                                                                      |             |                                                 |                  |            |              |                                |      |
| Storage Time                                                                                                                                                                                                                                                                              | I <sub>C</sub> = 10 A                                                                              |             | (T <sub>C</sub> = 25°C)                         | t <sub>sv</sub>  |            | 1.3          | _                              | s    |
| Fall Time                                                                                                                                                                                                                                                                                 | $I_{B1} = 2 A$                                                                                     | BUX48       | (10 - 20 0)                                     | t <sub>fi</sub>  | _          | 0.06         | —a                             |      |
| Storage Time                                                                                                                                                                                                                                                                              |                                                                                                    |             |                                                 | t <sub>sv</sub>  | _          | 1.5          | 2.5                            | ]    |
| Crossover Time                                                                                                                                                                                                                                                                            | I <sub>C</sub> = 8 A<br>I <sub>B1</sub> = 1.6 A                                                    | BUX48A      | (T <sub>C</sub> = 100°C)                        | t <sub>c</sub>   | _          | 0.3          | 0.6                            | 1    |
| Fall Time                                                                                                                                                                                                                                                                                 | .DI 1.071                                                                                          | 20/140/1    |                                                 | t <sub>fi</sub>  | _          | 0.17         | 0.35                           | 1    |

<sup>(1)</sup> Pulse Test: Pulse Width = 300 s, Duty Cycle  $\leq$  2%. Vcl = 300 V, VBE(off) = 5 V, Lc = 180 H BUX48 BUX48A

Rev0\_02052020EM










**Table 1. Test Conditions for Dynamic Performance** 



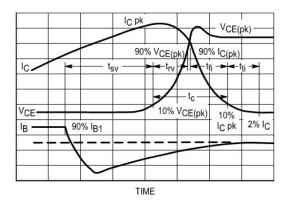



Figure 7. Inductive Switching Measurements

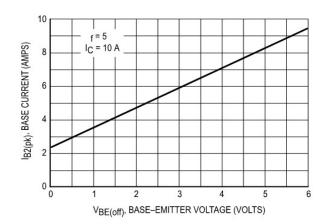
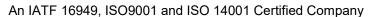




Figure 8. Peak-Reverse Current









#### INDUCTIVE SWITCHING

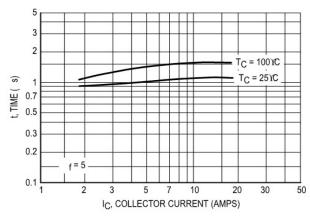



Figure 9. Storage Time, t<sub>SV</sub>

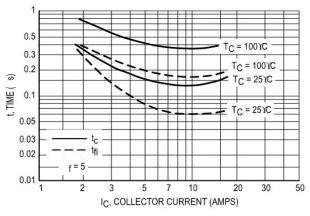



Figure 10. Crossover and Fall Times

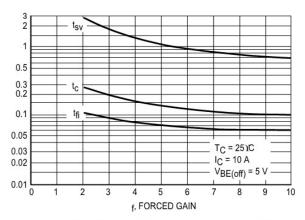
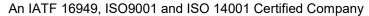




Figure 11a. Turn-Off Times versus Forced Gain



Figure 11b. Turn-Off Times versus Ib2/Ib1









### **Typical Characteristic Curves**

The Safe Operating Area figures shown in Figures 12 and 13 are specified for these devices under the test conditions shown.

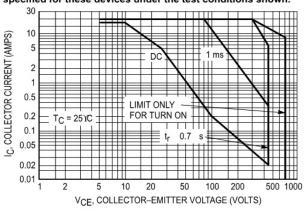



Figure 12. Forward Bias Safe Operating Area

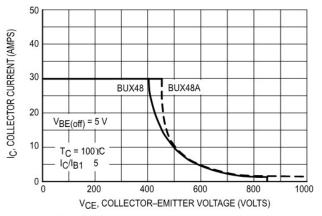



Figure 13. Reverse Bias Safe Operating Area

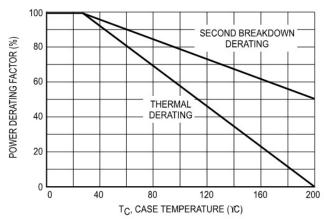



Figure 14. Power Derating

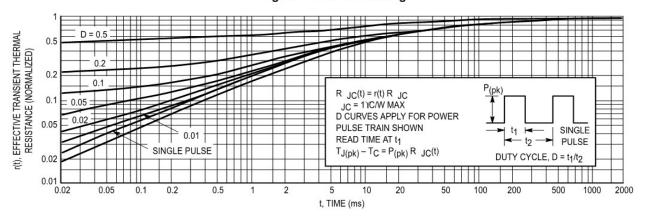
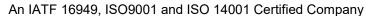




Figure 15. Thermal Response









## **Typical Characteristic Curves**

#### **OVERLOAD CHARACTERISTICS**

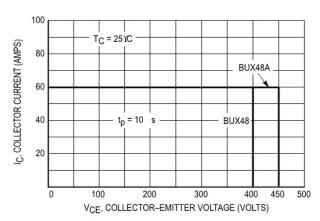



Figure 16. Rated Overload Safe Operating Area (OLSOA)

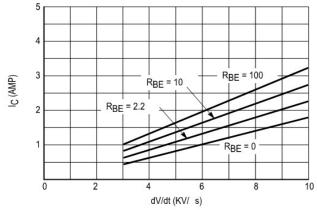



Figure 17.  $I_C = f(dV/dt)$ 

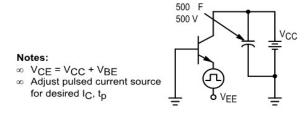
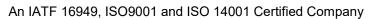
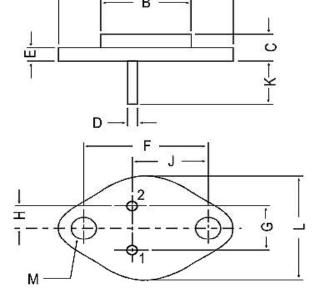
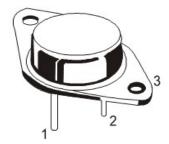




Figure 18. Overload SOA Test Circuit








## **Package Details**



All dimensions in mm.

| DIM | MIN.  | MAX.  |
|-----|-------|-------|
| Α   |       | 39.37 |
| В   | _     | 22.22 |
| С   | 6.35  | 8.50  |
| D   | 0.96  | 1.09  |
| Е   | -     | 1.77  |
| F   | 29.90 | 30.40 |
| G   | 10.69 | 11.18 |
| Н   | 5.20  | 5.72  |
| J   | 16.64 | 17.15 |
| K   | 11.15 | 12.25 |
| L   | _     | 26.67 |
| М   | 3.84  | 4.19  |



#### PIN CONFIGURATION

- 1. BASE
- 2. EMITTER
- 3. COLLECTOR

# **Packing Detail**

|   | PACKAGE | STANDARD PACK |                | INNER CARTON BOX  |      | OUTER CARTON BOX  |     | (        |
|---|---------|---------------|----------------|-------------------|------|-------------------|-----|----------|
| 9 |         | Details       | Net Weight/Qty | Size              | Qty  | Size              | Qty | Gr Wt    |
|   | TO-3    | 100 pcs/pkt   | 1.3 kg/100 pcs | 12.5" x 8" x 1.8" | 0.1K | 17" x 11.5" x 21" | 2K  | 27.5 kgs |



An IATF 16949, ISO9001 and ISO 14001 Certified Company





# Recommended Product Storage Environment for Discrete Semiconductor Devices

This storage environment assumes that the Diodes and transistors are packed properly inside the original packing supplied by CDIL.

- · Temperature 5 °C to 30 °C
- · Humidity between 40 to 70 %RH
- · Air should be clean.
- · Avoid harmful gas or dust.
- · Avoid outdoor exposure or storage in areas subject to rain or water spraying .
- · Avoid storage in areas subject to corrosive gas or dust. Product shall not be stored in areas exposed to direct sunlight.
- Avoid rapid change of temperature.
- · Avoid condensation.
- · Mechanical stress such as vibration and impact shall be avoided.
- · The product shall not be placed directly on the floor.
- The product shall be stored on a plane area. They should not be turned upside down. They should not be placed against the wall.

#### **Shelf Life of CDIL Products**

The shelf life of products is the period from product manufacture to shipment to customers. The product can be unconditionally shipped within this period. The period is defined as 2 years.

If products are stored longer than the shelf life of 2 years the products shall be subjected to quality check as per CDIL quality procedure.

The products are further warranted for another one year after the date of shipment subject to the above conditions in CDIL original packing.

#### Floor Life of CDIL Products and MSL Level

When the products are opened from the original packing, the floor life will start.

For this, the following JEDEC table may be referred:

| JEDEC MSL Level |                    |                 |  |  |  |
|-----------------|--------------------|-----------------|--|--|--|
| Level           | Time               | Condition       |  |  |  |
| 1               | Unlimited          | ≤30 °C / 85% RH |  |  |  |
| 2               | 1 Year             | ≤30 °C / 60% RH |  |  |  |
| 2a              | 4 Weeks            | ≤30 °C / 60% RH |  |  |  |
| 3               | 168 Hours          | ≤30 °C / 60% RH |  |  |  |
| 4               | 72 Hours           | ≤30 °C / 60% RH |  |  |  |
| 5               | 48 Hours           | ≤30 °C / 60% RH |  |  |  |
| 5a              | 24 Hours           | ≤30 °C / 60% RH |  |  |  |
| 6               | Time on Label(TOL) | ≤30 °C / 60% RH |  |  |  |







#### **Customer Notes**

#### **Component Disposal Instructions**

- 1. CDIL Semiconductor Devices are RoHS compliant, customers are requested to please dispose as per prevailing Environmental Legislation of their Country.
- 2. In Europe, please dispose as per EU Directive 2002/96/EC on Waste Electrical and Electronic Equipment (WEEE).

#### **Disclaimer**

The product information and the selection guides facilitate selection of the CDIL's Semiconductor Device(s) best suited for application in your product(s) as per your requirement. It is recommended that you completely review our Data Sheet(s) so as to confirm that the Device(s) meet functionality parameters for your application. The information furnished in the Data Sheet and on the CDIL Web Site/CD are believed to be accurate and reliable. CDIL however, does not assume responsibility for inaccuracies or incomplete information. Furthermore, CDIL does not assume liability whatsoever, arising out of the application or use of any CDIL product; neither does it convey any license under its patent rights nor rights of others. These products are not designed for use in life saving/support appliances or systems. CDIL customers selling these products (either as individual Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their own risk and CDIL will not be responsible for any damages resulting from such sale(s).

CDIL strives for continuous improvement and reserves the right to change the specifications of its products without prior notice.



CDIL is a registered trademark of

#### **Continental Device India Pvt. Limited**

C-120 Naraina Industrial Area, New Delhi 110 028, India.
Telephone +91-11-2579 6150, 4141 1112 Fax +91-11-2579 5290, 4141 1119
email@cdil.com www.cdil.com

CIN No. U32109DL1964PTC004291