TRIDONIC

LED Driver

Compact fixed output

Driver LC 10W 250 mA fixC C SNC
essence series

Product description

- Fixed output built-in LED Driver
- Constant current LED Driver
- For luminaires of protection class I and protection class II
- Temperature protection as per EN 61347-2-13 C5e
- Output current 250 mA
- Max. output power 10 W
- Nominal life-time up to 50,000 h
- 5-year guarantee

Housing properties

- Casing: polycarbonat, white
- Type of protection IP20

Functions

- Overload protection
- Short-circuit protection
- No-load protection
- Burst protection voltage 1 kV
- Surge protection voltage 1 kV (L to N)
- Surge protection voltage 2 kV (L/N to earth)

\rightarrow

Standards, page 3
Wiring diagrams and installation examples, page 3

TRIDONIC

LED Driver
Compact fixed output

Technical data

Rated supply voltage	$220-240 \mathrm{~V}$
AC voltage range	$198-264 \mathrm{~V}$
Mains frequency	$50 / 60 \mathrm{~Hz}$
Overvoltage protection	$320 \mathrm{~V} \mathrm{AC}, 1 \mathrm{~h}$
THD (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	$<20 \%$
Output current tolerance ${ }^{(3)}$	$\pm 7.5 \%$
Typ. current ripple (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	$\pm 30 \%$
Starting time (at 230 V, 50 Hz, full load)	$\leq 0.5 \mathrm{~s}$
Turn off time (at 230 V, 50 Hz, full load)	$\leq 0.5 \mathrm{~s}$
Hold on time at power failure (output)	0 s
Ambient temperature ta	$-20 \ldots+55^{\circ} \mathrm{C}$
Ambient temperature ta (at life-time $50,000 \mathrm{~h})$	$45^{\circ} \mathrm{C}$
Storage temperature ts	$-40 \ldots+80{ }^{\circ} \mathrm{C}$
Life-time	$\mathrm{up} \mathrm{to} 50,000 \mathrm{~h}$
Dimensions $\mathrm{L} \times \mathrm{W} \times \mathrm{H}$	$80 \times 40 \times 21 \mathrm{~mm}$

Driver LC 10W 250mA fixC C SNC

essence series

Ordering data

Type	Article number	Packaging, carton	Packaging, low volume	Packaging, high volume	Weight per pc.
LC 10W 250mA fixC C SNC	$\mathbf{8 7 5 0 0 6 2 8}$	$25 \mathrm{pc}(\mathrm{s})$.	$1,100 \mathrm{pc}(\mathrm{s})$.	$7,700 \mathrm{pc}(\mathrm{s})$.	0.042 kg

Specific technical data

Type	Output current ${ }^{\text {(3) }}$	Input current (at 230 V , 50 Hz , full load)	Max input power	Typ. power consumption (at 230 V , 50 Hz , full load)	Output power range	λ at full load ${ }^{\text {® }}$	$\begin{gathered} \text { Efficiency } \\ \text { at full } \\ \text { load }^{\oplus} \end{gathered}$	λ at min. load ${ }^{\text {(}}$	Efficiency at min. load ${ }^{(1)}$	Min. forward voltage	Max. forward voltage	Max. output voltage	Max. output peak current at full load ${ }^{(2)}$	Max. output peak current at min. load ${ }^{\text {² }}$	Max. casing temperature tc
LC 10W 250mA fixC C SNC	250 mA	57 mA	12 W	11.7 W	7-10 W	0.91C	85 \%	0.85C	82 \%	28 V	40 V	60 V	325 mA	325 mA	$90^{\circ} \mathrm{C}$

[^0](2) The trend between min. and full load is linear.
${ }^{3}$ (3) Output current is mean value.

1. Standards

EN 55015
EN 61000-3-2
EN 61000-3-3
EN 61347-1
EN 61347-2-13
EN 61547
EN 62384

1.1 Glow-wire test

according to EN 61347-1 with increased temperature of $850^{\circ} \mathrm{C}$ passed.

2. Thermal details and life-time

2.1 Expected life-time

Expected life-time					
Type	ta	$\mathbf{4 5}{ }^{\circ} \mathrm{C}$	$\mathbf{5 5}{ }^{\circ} \mathrm{C}$	$\mathbf{6 0}{ }^{\circ} \mathrm{C}$	
LC 10W 250mA fixC C SNC	tc	$80^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$	\times	
	Life-time	$50,000 \mathrm{~h}$	$30,000 \mathrm{~h}$	\times	

The LED Drivers are designed for a life-time stated above under reference conditions and with a failure probability of less than 10%.

3. Installation / wiring

3.1 Circuit diagram

3.2 Wiring type and cross section

The wiring can be done with a cross section of $0.5-1.5 \mathrm{~mm}^{2}$. Strip $8.5-9.5 \mathrm{~mm}$ of insulation from the cables to ensure perfect operation of the push-wire terminals.

3.3 Release of the wiring

Press down the "push button" and remove the cable from front.

3.4 Wiring guidelines

- All connections must be kept as short as possible to ensure good EMI behaviour.
- Mains leads should be kept apart from LED Driver and other leads (ideally 5 - 10 cm distance)
- Max. length of output wires is 2 m .
- Secondary switching is not permitted.
- Incorrect wiring can demage LED modules.
- To avoid the damage of the Driver, the wiring must be protected against short circuits to earth (sharp edged metal parts, metal cable clips, louver, etc.).

3.5 Replace LED module

1. Mains off
2. Remove LED module
3. Wait for 20 seconds
4. Connect LED module again

Hot plug-in or secondary switching of LEDs is not permitted and may cause a very high current to the LEDs.

3.6 Installation instructions

The LED module and all contact points within the wiring must be sufficiently insulated against 3 kV surge voltage.
Air and creepage distance must be maintained.

3.7 Mounting of device

Max. torque for fixing: $0.5 \mathrm{Nm} / \mathrm{M} 4$

4. Electrical values

4.1 Efficiency vs load

LED Driver

Compact fixed output

4.2 Power factor vs load

4.3 Input power vs load

4.4 Input current vs load

4.6 Maximum loading of automatic circuit breakers in relation to inrush current

Automatic circuit breaker type	C10	C13	C16	C20	B10	B13	B16	B20	Inrush current	
Installation \varnothing	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	$I_{\text {max }}$	Time
LC 10W 250mA fixC C SNC	120	160	200	240	120	160	200	240	3.02 A	$36 \mu \mathrm{~s}$

These are max. values calculated out of continuous current running the device on full load.
There is no limitation due to inrush current.
If load is smaller than full load for calculation only continuous current has to be considered.

4.7 Harmonic distortion in the mains supply (at $230 \mathrm{~V} / 50 \mathrm{~Hz}$ and full load)

in \%

	THD	3.	5	7.	9.	11.
LC 10W 250mA fixC C SNC	<20	<9	<8	<6	<4	<3

5. Functions

5.1 Short-circuit behaviour

In case of a short circuit on the secondary side (LED) the LED Driver switches into hic-cup mode. After elimination of the short-circuit fault the LED Driver will recover automatically.

5.2 No-load operation

The LED Driver works in burst working mode to provide a constant output voltage regulation which allows the application to be able to work safely when LED string opens due to a failure.

5.3 Overload protection

If the output voltage range is exceeded the LED Driver will protect itself and LED may flicker. After elimination of the overload, the nominal operation is restored automatically.

6. Miscellaneous

6.1 Insulation and electric strength testing of luminaires

Electronic devices can be damaged by high voltage. This has to be considered during the routine testing of the luminaires in production.

According to IEC 60598-1 Annex Q (informative only!) or ENEC 303-Annex A, each luminaire should be submitted to an insulation test with 500 V dc for 1 second. This test voltage should be connected between the interconnected phase and neutral terminals and the earth terminal.
The insulation resistance must be at least $2 \mathrm{M} \Omega$.
As an alternative, IEC 60598-1 Annex Q describes a test of the electrical strength with 1500 V AC (or $1.414 \times 1500 \mathrm{~V}$ dc). To avoid damage to the electronic devices this test must not be conducted.

6.2 Conditions of use and storage

Humidity:	5% up to max. 85%, not condensed (max. 56 days/year at $85 \%)$
Storage temperature:	$-40^{\circ} \mathrm{C}$ up to max. $+80^{\circ} \mathrm{C}$

The devices have to be within the specified temperature range (ta) before they can be operated.

6.3 Maximum number of switching cycles

All LED Driver are tested with 50,000 switching cycles.
The actually achieved number of switching cycles is significantly higher.

6.4 Additional information

Additional technical information at www.tridonic.com \rightarrow Technical Data
Guarantee conditions at www.tridonic.com \rightarrow Services
Life-time declarations are informative and represent no warranty claim. No warranty if device was opened.

[^0]: ${ }^{(1)}$ Test result at $230 \mathrm{~V}, 50 \mathrm{~Hz}$.

