

DUCATI energia

HISTORY DRIVES THE FUTURE

Depuis 1926

INDEX

DUCATI ActiSine **ANNEXE**

NOUVEATÉ DUCATI	
Nouveauté sèrie de Régulateurs de Puissance Reactive "rEvolution" R5 e R8, App "DUCATI	04
Smart Energy"	
NOUVEAU DUCATI 50-M AVEC LE RÉGULATEURS DE PUISSANCE REACTIVE	05
START&GO, MODULE XD	
DUCATI energia	06
Groupe Ducati energia	
CONDENSATEURS	08
Technologie	
Condensateurs monophasé	09
MONO - LONG LIFE 4In	10
FLOPPY CAP	
Condensateurs triphasé	11
MODULO XD	14
MODULO XD MINI	16
DUCATI F50	
COMPOSANTS ET DIVERS	18
rEvolution R5,R8 - Régulateurs de Puissance Reactive	19
rEvolution R5 - Régulateurs de Puissance Reactive	20
rEvolution R8 - Régulateurs de Puissance Reactive	21
REGO12 - Régulateurs de Puissance Reactive	22
DUCNET ENERGY CLOUD	23
ENERGY GEAR et ENERGY BRIDGE	24
TIROIRS	25
DUCATI C160	26
DUCATI C160-MINI	27
DUCATI C-100-L	27
DUCATI C50-L-MINI	28
SAH – SELF ANTI HARMONIQUES	30
CONTACTEURS	32
SECTIONNEURS	
BATTERIES DE COMPENSATION D'ÉNERGIE	36
REACTIVE	
CRITÉRE DE SÉLECTION	38
Batteries fixe de Compensation d'énergie reactive	40
DUCATI F120	40
Batteries automatique de Compensation d'énergie reactive	42
DUCATI 50-M	46 48
DUCATI 200-M	40
DUCATI 400-M DUCATI 1600-R	53
Batteries automatique de Compensation avec SAH	
DUCATI 170-ML	54
DUCATI 1700-RL	
DUCATI 1000-RL/HP	58
Batteries automatique de compensation en temps réel	
DUCATI 1000-RL/S	59
Filtres actifs	

Nouveaté sèrie de Régulateurs de Puissance Reactive "rEvolution" R5 e R8

LES RÉGULATEURS DE FACTEUR DE PUISSANCE R5 ET R8 ONT ÉTÉ CONÇUS POUR INTRODUIRE UNE NOUVELLE VISION DANS LE DOMAINE DE LA COMPENSATION D'ÉNERGIE REACTIVE.

ASPECTS TECHNIQUES

ASPECTS "SMART"

DUCATI R5 DUCATI R8

Les nouveaux Régulateurs de Facteur de Puissance **rEvolution R5** et **R8** ont été conçus pour introduire une nouvelle vision dans le domaine de la compensation d'énergie reactive.

Ces régulateurs innovants combinent la fiabilité de la série précédente avec les nouvelles technologie de communication.

Parmi les aspect techniques les plus importants:

- 96x96mm dimensions, avec une profondeur de seul 57mm
- Facile à installer
- Détection automatique de la direction et de la phase du TA pour réduire les errours d'installation
- Sélection intelligente des étapes pour une consummation uniforme
- Mesure du spectre harmonique jusqu'au 60ème

Parmi les aspect "Smart" les plus importants:

- Technologie NFC sur tous les régulateurs pour échanger des donnéès avec "DUCATI app" sur le smartphone
- Diverses options de connexion (radio, RS485, Ethernet, Bluetooth, USB)
- Intégration optionnelle avec cloud DUCNET, pour la gestion et l'analyse à distance de fonctionnement et alarmes

La série rEvolution sera installée sur les Systemes de Compensation DUCATI dans ces différentes versions:

- DUCATI 200-M → R5
- DUCATI **400-M → R5** avec radio 868MHz module et connexion RS485
- DUCATI 170-ML → R5 avec radio 868MHz module et connexion RS485
- DUCATI **1600-R → R8** avec radio 868MHz module et connexion RS485 et Bluetooth
- DUCATI **1000-RL** et **1000-RL/HP → R8** avec radio 868MHz module, RS485 et Bluetooth

"DUCATI Smart Energy" App

L'application dédiée "**DUCATI Smart Energy**" ont été conçu pour simplifier les operations de configuration et contrôle de tous les Systemes avec les nouveaux règulateur de facteur de puissance **R5** et **R8**. Le smartphone peut communiquer via NFC (standard pour tous les modèls) ou via Bluetooth (en option sur R8).

Fonctionnalité:

- Réglage facile et intuitif des parameters de configuration
- Firmware update disponibles en temps réel
- Écran de verification de l'état de l'appareil (Consommation de la batterie des condensateurs, manœuvres des contacteurs, etc.)
- Les fichiers de configuration partagés par e-mail

DÉCHARGER APP

Nouveau DUCATI 50-M avec Règulateur de facteur de puissance START&GO

DUCATI energia présente la nouvelle série 50-M dédiéè aux petites puissances, l'équipment avec le nouveau, Règulateur de facteur de puissance **START&GO**, conçu pour simplifier l'installation de l'appareil. Le nouveau régulateur est capable de détecter automatiquement tous les paramètres utilisés pour démarrer l'unité et l'activation correcte des étapes.

DUCATI 50-M AVEC START&GO RÈGULATEUR DE FACTEUR DE PUISSANCE

Parmi les aspect techniques les plus importants: Aucune configuration requise (autodétection TA)

- Aucune configuration requise (autodétection TA)
- Led verte / rouge pour un contrôle instantané de l'état
- Vérifiez la table avec les échecs / alarmes les plus communs sur le front et des suggestions pour résoudre les problèmes
- Opération à 4 quadrants
- Logique "Sauver les contacteurs" pour une utilisation plus uniforme et optimisée des batteries des condensateurs.

Découvrez les avantages du START&GO: hiips://www.youtube.com/watch?v=ELVw80750wl.

MODULE XD: le seul Original et Inimitable

MODULE XD

DUCATI energia a toujours été synonyme de qualité et de haute performance. Pour cette raison, nos produits, en particulier les condensateurs triphasés, sont soumis à une mauvaise contrefaçon. Seulement sur l'original **MODULE XD** il y a un hologramme anti-contrefaçon de dernière génération, qui garantit l'achat et donc la qualité des condensateurs fabriqués par DUCATI. La structure spéciale de l'hologramme est facilement reconnaissable et impossible à reproduire. Disponible au T2 2017.

DUCATI ENERGIA

A propos, qualité, service

DUCATI, fondée en 1926 par les frères Ducati, a été parmi les premiers au monde à lancer la production industrielle de condensateurs et et a été un leader du marché depuis lors.

Depuis sa fondation, DUCATI Energia a toujours été à l'avant-garde du développement technique et industriel, menant la recherche qui façonne la technologie d'aujourd'hui et coopérant aux ameliorations qui conduisant aux normes IEC et EN actuelles pour les condensateurs.

DUCATI energia a d'abord introduit la technologie du film de polypropylène métallisé et ses films innovants PPM et PPMh ont servi de référence pour cette technologie, surclassant la technologie obsolète du papier / pétrole et gaz en termes de performances supérieures et de dimensions réduites.

Les principaux domaines d'activités du groupe DUCATI energia sont:

- Condensateurs d'éclairage et moteur
- Condensateurs d'électronique de puissance
- Condensateurs et systèmes de correction de facteur de puissance (BT
- Alternateurs et systèmes d'allumage
- Véhicules électriques et bornes de recharge pour véhicules électriques
- Analyseurs de resaux électrique
- Systèmes de contrôle pour les réseaux d'énergie
- Systèmes de signalisation ferroviaire
- Systèmes de billetterie et d'automatisation du transport

Qualité

La plus grande attention à la qualité du produit et au service à la clientèle sont des constantes dans l'histoire de DUCATI et les principaux facteurs contribuant à son succès dans le monde entier. DUCATI a toujours été l'une des premières entreprises dans son domaine, en Italie eten Europe,

d'adopter les normes et les procédures les plus modernes afin d'assurer le plus haut niveau de qualité et de fiabilité des produits.

Le SYSTÈME DE QUALITÉ de DUCATI Energia SpA, division des condensateurs, tel que décrit dans le Manuel Qualité, a été l'un des premiers en Italie à être approuvé par le BSI conformément aux procédures ISO 9002 (EN 29002): Certificat d'Enregistrement N. FM22004. DUCATI Energia est certifiée ISO 9001: 2008. ISO 14001: 2004 et OHSAS 18001: 2007.

Tout cela a été réalisé grâce à des processus de production entièrement automatisés et intégrés, à des machines entièrement nouvelles et innovantes, à des méthodes de contrôle des processus de production basées sur des spécifications précises et à l'attribution de responsabilités aux opérateurs à tous les niveaux.

Les condensateurs, les systèmes et les relais sont conformes aux exigences des Directives CE 73/23 et 93/68 ("Directive Basse Tension"), 89/336 et 92/31 ("Directive de Compatibilité Electromagnétique").Les normes de référence européennes harmonisées sont EN 60831-1 et EN 60831-2.

Presque tous les modèles sont certifiés par des instituts internationaux et tous sont fabriqués en totale conformité avec les exigences de ces normes. Le taux de défaillance (uniquement pour les condensateurs) est de 300 par 109 composants x heures (fiabilité selon DIN 40040).

Services

Dans la conception et le choix d'un Systeme de correction du facteur de puissance, l'expérience et l'expertise sont les principales caractéristiques qui peuvent faire la différence. DUCATI Energia vous guide tout au long du processus, du choix du système CFP le plus adapté à la mise en service, la maintenance et la gestion de la même unité.

Une équipe d'experts est dédiée à la conception: toute prérogative de l'équipement est analysée pour obtenir la solution la plus efficace en fonction des conditions de fonctionnement et des besoins de l'ensemble du système.

Le service après-vente est essentiel pour aider le client dans la bonne installation des différentes unités. Un numéro dédié qui fournit un service qui guidera le client dans le réglage des différents paramètres et vous aidera à résoudre les petits problèmes qui peuvent survenir lors du démarrage de l'équipement. Les meilleurs résultats sont obtenus en combinant l'expérience acquise au fil des années avec une connaissance approfondie des technologies utilisées. En un mot, DUCATI.

Certification du système de gestion de la qualité ISO 9001:2008

Certification du système de management environmental ISO 14001:2004

Certification du système de management de la santé et de la sécurité au travail BS OHSAS 18001:2007

CONDENSATEURS

TECHNOLOGIE

Technologie de Condensateurs

DUCATI a été la première entreprise en Italie et l'une des premières au monde à introduire des condensateurs pour les équipements de radiocommunication conçus par Guglielmo Marconi.

S'appuyant sur cette tradition, qui a toujours vu DUCATI à la pointe de la technologie des condensateurs, la société a développé le film innovant PPM et PPMh avec un condensateur 4In.

Des performances supérieures et des dimensions réduites par rapport aux solutions de papier et de pétrole et de gaz devenues obsolètes font des condensateurs PPM / PPMh la nouvelle norme de référence pour les systèmes de correction de facteur de puissance industriels.

Tous les condensateurs fabriqués par DUCATI Energia disposent d'un dispositif de protection conforme aux normes EN 60831-1 / 2. Cette protection a été obtenue au moyen d'une technologie d'ingénierie spéciale: en cas de défaut, les connexions seront rompues en raison d'une surpression, laissant l'isolation du boîtier intacte et empêchant le condensateur d'exploser ou de brûler.

Technology Long Life 4I_N

La recherche continue menée dans les laboratoires de DUCATI Energia a conduit au développement d'un film de polypropylène à métallisation spéciale, dont le but est de favoriser le processus d'auto-cicatrisation et de réduire les pertes diélectriques..

Grâce à ce traitement de métallisation innovant, le polypropylène est soumis à moins de contraintes en cours de fonctionnement. Par conséquent, il maintient ses propriétés diélectriques pour une durée significativement plus longue tout en offrant des performances significativement meilleures en termes de courant et de tension 4ln.

Les caractéristiques décrites ci-dessus rendent ces condensateurs particulièrement adaptés au service continu dans des conditions très exigeantes dans des environnements riches en harmoniques.

La série **Long Life 4IN** de condensateurs monophasés pour CFP industriel, avec des éléments enroulés en film PPMh, est la meilleure en termes de fiabilité, de performances et de taille réduite.

La série **MONO Long Life 4IN**, équipée dans toutes les unités PFC DUCATI, utilise ce type de technologie.

Condensateurs monophasé					
	Technologie	Gamme de puissance (kVAr)	Gamme de tension (V)		
MONO	4 I _N	1.67 - 8.33	400 - 525		
FLOPPY CAP	Standard Life	1.67 - 4.17	400 - 550		

Condensateurs triphasé					
	Technologie	Gamme de puissance (kVAr)	Gamme de tension (V)		
MODULO XD	Extra Duty	1.5 - 50	240 - 800		
MODULO XD Mini	Extra Duty	0.5 - 10	400 - 550		
F50	4 I _N	5 - 60	415 - 525		

MONO Long Life 41_N

Condesateurs Monophasé

Les condensateurs composant la série **MONO Long Life 4IN** sont fabriqués à partir d'éléments enroulés avec le film PPMh et logés dans des bôitiers métalliques avec couvercles métalliques. Les pièces sont assemblées par sertissage pour assurer une parfaite étanchéité à l'air du système et un fonctionnement efficace du dispositif de sécurité contre les surpressions. L'utilisation de la technologie d'imprégnation de résine améliore grandement la performance du condensateur en termes de dissipation thermique ainsi que d'assurer une longue vie et une excellente isolation au sol.

Ces caractéristiques rendent ces condensateurs particulièrement adaptés au service continu dans des conditions très exigeantes dans des environnements riches en harmoniques.

Caractéristiques générales

·	
Gamme de puissance	1.67 – 8.33 kVAr
Gamme de tension	400 ÷ 525 V
Fréquence nominale	50 Hz/60 Hz
Tolérance de capacité	-5 +10%
Service	Continu
Pertes wattées	≤ 0.2 W/kVAr
Duréè	≥ 110000h – 25/D ≥ 130000h – 25/C
Max dV/dt	≤ 100 V /µs
Classe de température	-25/D
Surintensité admissible In	4 x ln
Tenue au pic de courant	200 I _n
Bornes	Double faston M5 boulon pour Q= 8.33 kVAr
Indice de protection	IP 00
Résistance de décharge	Non. En option résistance de décharge 68kΩ 4W 315.99.0116
Matériel d'imprégnation	Résine écologique
Altitude	≤ 2000 m s.l.m.
Test de tension (CA) entre les bornes	2.15 U _n x 2 s
Test de tension entre les bornes et le bôitier	3kV x 10 s
Normes	IEC 831 - 1/2
Acceptation	* avec modification PN 416.84.

Un (V)	Qn (kVAr)	In (A)	C (μF)	DxH (mm)	Pcs x box	Part n. 416.53
400	1.67 2.5 3.33 4.17 5 6.66 8.33	4.2 6.3 8.3 10.4 12.5 16.7 20.8	33.2 49.8 66.3 83 99.5 132.6 165.8	45x115 50x115 50x150 55x150 60x150 60x165 65x165	40 28 28 28 25 18	1100 1150 1200 1250 1300 1350 1400
415	1.67 2.5 3.33 4.17 5 6.66 8.33	4 6 8 10 12 16 20	30.9 46.2 61.6 77.1 92.5 123.2 154	45x115 50x115 50x150 55x150 60x150 60x165 65x165	40 28 28 28 25 18	2100 2150 2200 2250 2300 2350 2400
450	1.67 2.5 3.33 4.17 5 6.66 8.33	3.7 5.6 7.4 9.3 11.1 18.8 18.5	26.3 39.3 52.4 65.6 78.6 104.7 131	45x115 50x115 50x150 55x150 60x150 60x165 65x165	40 28 28 28 25 18	3100 3150 3200 3250 3300 3350 3400
525	1.67 2.5 3.33 4.17 5 6.66 8.33	3.2 4.8 6.3 7.9 9.5 12.7 15.9	19.3 28.9 38.5 48.2 57.8 77 96.2	45x115 50x115 50x150 55x150 60x150 60x165 65x165	40 28 28 28 25 18	4100 4150 4200 4250 4300 4350 4400

Dimensions de la emballage standard: 195x390x255 mm Poids: 9 Kg.

Couvercle du borne IP54				
Code 316.	Diam. (mm)	Pes n pour Emballage		
23.0860	45	100		
23.1070	50	200		
52.3350	55	72		
52.3355	60	60		
52.3360	65	60		

Pour que le dispositif de protection contre la surpression puisse fonctionner efficacement, il est nécessaire de laisser un espace d'au moins 30 mm. au-dessus de l'élément et utilisez des câbles flexibles pour le raccordement.

FLOPPY CAP

Condensateurs monophasé

Les condensateurs de la série FLOPPY CAP - STANDARD LIFE sont réalisé en utilisant des bôitieres métallique. Les couvercles sont en plastique auto-extinguible (Classe V2 en accord avec la norme UL 94 pour la classification sur l'inflammabilité). La fermeture du condensateur est réalisée au moyen de bordure du boîtier sur le couvercle, solution qui garantit une parfaite étanchéité pour assurer le bon fonctionnement du dispositif de protection contre la surpression L'adoption d'un conteneur isolant, situé entre l'élément capacitif et le boîtier métallique, plus le blocage de l'élément capacitif en résine, rendent le condensateur extrêmement sûr du point de vue électrique (isolation vers la masse) et d'insensibilité aux vibrations.

Caractéristiques générales

Gamme de puissance	1.67 – 4.17 kVAr
Gamme de tension	230 ÷ 550 V
Fréquence nominale	50 Hz /60 Hz
Tolérance de capacité	-5 +10%
Service	Continu
Pertes diélectriques	≤ 0.3 W/kVAr
Duréè de vie attendue	≥ 50000h – 25/D ≥ 80000h – 25/C
Max dV/dt	≤ 25 V /µs
Classe de température	-25/D
Surintensité admissible In	2 x ln
Tenue au pic de courant	100 I _n
Bornes	Double faston
Indice de protection	IP 00
Résistance de décharge	NO
Matériel d'imprégnation	Résine écologique
Altitude	≤ 2000 m s.l.m.
Test de tension (CA) entre les bornes	2.15 U _n x 2 s
Test de tension entre les bornes et le bôitier	3kV x 10 s
Normes	IEC 831 - 1/2

Un (V)	Qn (kVAr)	In (A)	Cn (µF)	DxH (mm)	Pcs x box	Part n. 416.30	Dim. Box
230	0.83 1.67	3.6 7.2	50.2 100	45x122 60x137	25 25	0764 0564	A A
400	1.67 2.5 3.33 4.17	4.2 6.3 8.3 10.4	33.2 50 66.3 83	50x122 55x132 60x137 60x137	25 25 25 25	3964 4064 3764 5064	B A A
415	1.67 2.5 3.33 4.17	4 6 8 10	30.9 46.2 61.6 77	50x122 55x132 60x137 60x137	25 25 25 25	3264 3464 3664 5264	A A A
450	1.67 2.5 3.33 4.17	3.7 5.6 7.4 9.3	26.3 39.3 52.4 65.5	50x132 55x132 60x137 60x137	25 25 25 25	6464 6164 6264 5364	A A A
500	1.67 2.5 3.33 4.17	3.3 5 6.6 8.3	21.3 31.8 42.4 53.1	50x132 55x132 60x137 60x137	25 25 25 25	8664 7664 7964 5664	A A A
550	1.67 2.5 3.33 4.17	3 4.5 6.1 7.6	17.6 26.3 35.1 43.4	45x132 55x132 60x137 60x137	25 25 25 25	8164 7464 7764 8064	B A A

Dimensions de boîte Standard: A= 195x390x255 mm. B= 195x390x200 mm. Poids: 9 Kg.

Couvercle du borne IP54				
Code 316.	Diam. (mm)	Emballages n. pz. per boîte		
23.0860	45	100		
23.1070	50	200		
52.3350	55	72		
52.3355	60	60		

Pour que le dispositif de protection contre la surpression puisse fonctionner efficacement, il est nécessaire de laisser un espace d'au moins 30 mm. au-dessus de l'élément et utilisez des câbles flexibles pour la connexion.

MODULO XD

Condensateurs Triphasé

Les condensateurs **MODULO XD** sont utilisés pour les systèmes de compensation d'énergie réactive, fixes et automatiques, dans une large gamme d'applications industrielles.

Les trois éléments sont logés dans un enveloppe en plastique qui, avec les agents d'imprégnation, assure une double isolation entre les noyaux enroulés et le bôitier métallique.

Pour garantir un remplissage parfait pendant le processus d'imprégnation de la résine, le processus lui-même est réalisé avant que les éléments ne soient placés dans l'enceinte; ainsi, la distribution et l'uniformité de l'imprégnation peuvent être soumis à une inspection visuelle et dimensionnelle complète.

Le système de protection contre les surpressions est dimensionné de manière à assurer en permanence une sécurité maximale en termes de protection du sol et de protection contre les risques d'arc électrique, même dans des conditions où la densité énergétique est élevée.

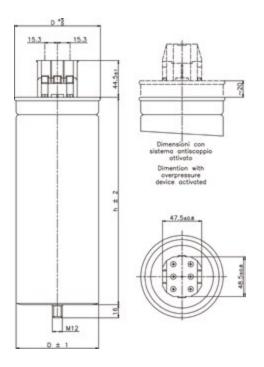
Les caractéristiques de ces condensateurs sont particulièrement adaptées pour un fonctionnement continu dans des conditions très exigeantes dans des environnements riches en harmoniques.

Caractéristiques générales

Gamme de puissance	1.5 ÷ 50 kVAr
Gamme de tension	230 ÷ 800 V
Fréquence nominale	50 Hz/60 Hz
Tolérance de capacité	-5 +10%
Service	Continu
Pertes diélectriques	≤ 0.2 W/kVAr
Duréè de vie attendue	≥110000h -25/D ≥130000h -25/C
Max dV/dt	100 V /μs
Classe de température	-25/D
Surintensité admissible In	4 x I _n
Tenue au pic de courant	200 I _n
Bornes	Princes à vis
Indice de protection	IP20 (IP54 sur demande)
Internal connection	Delta
Discharge resistance	External (50 V after 60")
Matériel d'imprégnation	Résine écologique
Altitude	≤ 4000 m s.l.m.
Storage Temperature	-40 +80 °C
Test de tension (CA) entre les bornes	2.15 Un x 2"
Test de tension entre les bornes et le bôitier	3kV x 10" (UN≤660 V)
Normes	IEC 831 - 1/2
Acceptation	c Nus à l'exclusion Ø 125 mm

Un	Qn	ln (1)	C	DxH	Туре	Pcs	Part n.	Dim.
(V) 240 (60Hz)	1.5 2.5 5 7.5 10 12.5 15	3.6 6 12 18 24 30 36	3x23 3x28 3x77 3x115 3x154 3x192 3x230	65x165 65x165 75x255 85x255 100x255 100x255 116x255	A A A A A	14 14 6 6 6 6 6	41646. 0020 0030 0050 0080 0100 0150 0200	E E F G H
400	1.5 2.5 5 7.5 10 12.5 15 20 25 30 40 45 50	2.2 3.6 7.2 10.8 14.4 18.0 21.7 28.9 36.1 43.3 57.7 65 72.2	3x9.9 3x17 3x33 3x50 3x66 3x83 3x99 3x133 3x166 3x199 3x265 3x298 3x332	65x165 65x165 75x165 75x255 75x255 85x255 90x255 100x255 116x255 116x290 116x370 125x370 125x370	A A A A A A A A B B	14 6 6 6 6 6 6 6 4 4 4 4	1020 1030 1050 1080 1100 1150 1200 1260 1310 1360 1370 1375 1380	EECFFFGHHII
415	1.5 2.5 5 7.5 10 12 15 20 25 30 40 45 50	2.1 3.5 7.0 10.4 13.9 17.4 20.9 27.8 34.8 41.7 55.6 62.6 69.6	3x9.2 3x15 3x31 3x46 3x62 3x77 3x92 3x123 3x154 3x185 3x246 3x277 3X308	65x165 65x165 75x165 75x255 75x255 85x255 90x255 110x255 116x255 116x270 116x370 116x370 125x370	A A A A A A A A A A A B	14 14 6 6 6 6 6 6 6 6 4 4 4 4	2020 2030 2050 2080 2100 2150 2200 2260 2310 2360 2370 2375 2380	E E C F F F G H H

Dimensions boîte Standard: C= 190x285x325 mm G= 225x340x270 mm E= 195x390x255 mm H= 330x340x225 mm F= 185x290x270 mm I= 270x270x450 mm Weight: $10\div12$ kg



MODULO XD

Condensateurs Triphasé

DESSIN TECHNIQUE TYPE A

Terminals and stud	Fixing torque
Screw terminals	1.5 Nm
M10**	6 Nm
M12	10 Nm

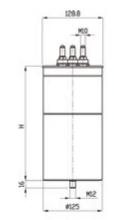
(**) Compléter le serrage à l'aide de deux clés

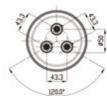
	l e e e e e e e e e e e e e e e e e e e							
Un (V)	Qn (kVAr)	In (A)	Cn (µF)	DxH (mm)	Туре	Pcs x box	Part n. 41646.	Dim. Box
440	1.5 2.5 5 7.5 10 12.5 15 20 25 30 40 45 50	2 3.3 6.6 9.8 13.1 16.4 19.7 26.2 32.8 39.4 52.5 59.0 65.6	3x8.2 3x14 3x27 3x41 3x55 3x69 3x82 3x110 3x137 3x164 3x219 3x247 3x274	65x165 65x165 75x165 75x255 75x255 85x255 90x255 100x255 116x255 116x290 116x370 116x370 125x370	A A A A A A A A A A	14 14 6 6 6 6 6 6 6 6 4 4 4 4	3023 3033 3053 3083 3103 3153 3203 3263 3313 3363 3373 3378 3383	E E C F F F G H H
450	1.5 2.5 5 7.5 10 12.5 15 20 25 30 40 45 50	1.9 3.2 6.4 9.6 12.8 16.0 19.2 25.7 32.1 38.5 51.3 57.7 64.2	3x7.9 3x13 3x26 3x39 3x52 3x65 3x79 3x105 3x131 3x157 3x210 3x236 3x262	65x165 65x165 75x165 75x255 75x255 85x255 90x255 100x255 116x255 116x290 116x370 116x370 125x370	A A A A A A A A A	14 14 6 6 6 6 6 6 6 6 4 4 4 4 4	3020 3030 3050 3080 3100 3150 3200 3260 3310 3360 3370 3375 3380	E E C F F F G H H I I I
500	1.5 2.5 5 7.5 10 12.5 15 20 25 30 40 45 50	1.7 2.9 5.8 8.7 11.5 14.4 17.3 23.1 28.9 34.6 46.2 52.0 57.7	3x6.4 3x11 3x21 3x32 3x42 3x53 3x64 3x85 3x106 3x127 3x170 3x191 3x212	65x165 65x165 75x165 75x255 75x255 85x255 90x255 100x255 116x255 116x290 116x370 116x370 125x370	A A A A A A A A A A A A A A A A A A A	14 14 6 6 6 6 6 6 6 6 4 4 4 4 4	4020 4030 4050 4080 4100 4150 4200 4260 4310 4360 4370 4375 4380	E E C F F F G H H I I I

Dimensions boîte Standard: C= 190x285x325 mm G= 225x340x270 mm E= 195x390x255 mm H= 330x340x225 mm F= 185x290x270 mm I= 270x270x450 mm

Poids: 10÷12

Un (V)	Qn (kVAr)	In (A)	Cn (µF)	DxH (mm)	Туре	Pcs x box	Part n. 41646.	Dim. Box
525	10 12.5 15 20 25 30 40 45 50	11 13.7 16.5 22 27.5 33 44 49.5 55	3x38 3x48 3x58 3x77 3x96 3x115 3x154 3x173 3x192	85x255 85x255 100x255 116x255 116x255 116x290 116x370 116x370 125x370	A A A A A A A	6 6 6 4 4 4 4 4 4	5130 5170 5230 5270 5330 5370 5373 5377 5385	F F G H H H
550	1.5 2.5 5 7.5 10 12.5 15 20 25 30 40 45 50	1.6 2.6 5.2 7.9 10.5 13.1 15.7 21 26.2 31.5 42 47.2 52.5	3x5.3 3x8.8 3x18 3x26 3x35 3x44 3x53 3x70 3x88 3x105 3x140 3x158 3x175	65x165 65x165 75x165 75x255 75x255 85x255 90x255 100x255 116x255 116x290 116x370 116x370 125x370	A A A A A A A A A A A A A A A A A A A	14 14 6 6 6 6 6 6 6 6 4 4 4 4 4	5020 5030 5050 5080 5100 5150 5200 5260 5310 5360 5372 5375 5380	E E C F F F G H H
690 (*)	10 12.5 15 20 25 30 40 45 50	8.4 10.5 12.6 16.7 20.9 25.1 33.5 37.7 41.8	3x22 3x28 3x33 3x45 3x56 3x67 3x89 3x100 3x111	75x255 85x255 90x255 100x255 116x255 116x290 116x370 116x370 125x370	A A A A A A A	6 6 6 6 4 4 4 4 4	6100 6150 6200 6260 6310 6360 6370 6375 6380	F F G H H I
800 (*)	10 12.5 15 20 25 30 40 45 50	7.2 9.0 10.8 14.4 18.0 21.7 28.9 32.5 36.1	3x17 3x21 3x25 3x33 3x41 3x50 3x66 3x75 3x83	75x255 85x255 90x255 100x255 116x255 116x290 116x370 116x370 125x370	A A A A A A A	6 6 6 6 4 4 4 4 4	8100 8150 8200 8260 8310 8360 8370 8375 8380	F F G H H

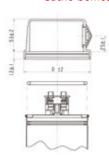

(*) Sans résistance de décharge.


C= 190x285x325 mm G= 225x340x270 mm E= 195x390x255 mm H= 330x340x225 mm F= 185x290x270 mm I= 270x270x450 mm

Poids: 10 ÷ 12 kg

Pour que le dispositif de protection contre la surpression puisse fonctionner efficacement, il est nécessaire de laisser un espace d'au moins 30 mm. au-dessus de l'élément et utilisez des câbles flexibles pour la connexion.

DESSIN TECHNIQUE TYPE B



Bornes et goujon	Couple de fixation
Screw terminals	1.5 Nm
M10**	6 Nm**
M12 stud	10 Nm

(**) Compléter le serrage à l'aide de deux clés.

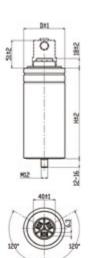
Cache-bornes

Code 316.52	Diam. (mm)	Emballage n. pz.
.3338	85	30
.3339	90	30
.3340	100	30
.3341	116	30

MODULO XD MINI

Condensateurs triphasé

Les condensateurs **MODULE XD Mini - COMPACT PERFORMANCE** intègrent l'excellente technologie MODULO XD avec une construction mécanique innovante, optimisée pour le gammes de puissance / tension 0,5 \div 10 kVAr / 400 \div 550 V. Grâce à leur construction mécanique et à un processus d'imprégnation de résine sèche particulièrement efficace, les mini-condensateurs **MODULO XD** offrent d'excellentes performances dans une le bôitier très compact. Les bornes faston, les résistances de décharge intégrées et le capot de protection IP20 simplifient leur installation et leur maintenance dans tous les types d'applications



General Characteristics

Gamme de puissance	0.5 ÷10 kVAr
Gamme de tension	400 ÷ 550 V
Fréquence nominale	50 Hz/60 Hz
Tolérance de capacité	-5 +10%
Service	Continu
Pertes wattée	≤ 0.2 W/kVAr
Duréè	≥110000h -25/D ≥130000h -25/C
Max dV/dt	100 V /μs
Classe de température	-25/D
Surintensité admissible In	3 x I _n
Tenue au pic de courant	200 I _n
Bornes	Faston 6.3x0.8 mm
Indice de protection	IP20 (avec cap de protction)
Connexion interne	Delta
Résistance de décharge	Internal (50 V after 60")
Matériel d'imprégnation	Résine écologique
Altitude	≤ 4000 m s.l.m.
Temperature de stocagé	-40 +80 °C
Test de tension (CA) entre les bornes	2.15 Un x 2"
Test de tension entre les bornes et le bôitier	3 kV x 10"
Normes	IEC 831 - 1/2

Un (V)	Qn (kVAr) 50 Hz	In (A)	Cn (μF)	DxH (mm)	Pcs x box	Part n. 416.12.	Dim. Box
400	0.5 1 1.5 2.5 5 7.5	0.7 1.4 2.2 3.6 7.2 10.8 14.4	3x3.32 3x6.63 3x9.95 3x16.6 3x33.2 3x49.7 3x66.3	50x150 50x150 50x150 60x150 75x175 75x265 75x265	21 21 21 18 6 12	1010 1020 1040 1060 1130 1150	E E E C D
415	0.5 1 1.5 2.5 5 7.5	0.7 1.4 2.1 3.5 7.0 10.4 13.9	3x3.08 3x6.16 3x9.24 3x15.4 3x30.8 3x46.2 3x61.6	50x150 50x150 50x150 60x150 75x175 75x265 75x265	21 21 21 18 6 12	2010 2020 2040 2060 2130 2150 2170	E E E C D
440	0.5 1 1.5 2.5 5 7.5	0.7 1.3 2.0 3.3 6.6 9.8 13.1	3x2.74 3x5.48 3x8.22 3x13.7 3x27.4 3x41.1 3x54.8	50x150 50x150 50x150 60x150 75x175 75x265 75x265	21 21 21 18 6 12	3010 3020 3040 3060 3130 3150 3170	E E E C D
450	0.5 1 1.5 2.5 5 7.5	0.6 1.3 1.9 3.2 6.4 9.6 12.8	3x2.62 3x5.24 3x7.86 3x13.1 3x26.2 3x39.3 3x52.4	50x150 50x150 50x150 60x150 75x175 75x265 75x265	21 21 21 18 6 12	4010 4020 4040 4060 4130 4150 4170	E E E C D
525	0.5 1 1.5 2.5 5 7.5	0.6 1.3 1.9 3.2 6.4 9.6 12.8	3x1.92 3x3.85 3x5.77 3x9.62 3x19.2 3x28.9 3x38.5	50x150 50x150 50x150 60x150 75x175 75x265 75x265	21 21 21 18 6 12	5010 5020 5040 5060 5130 5150 5170	E E E C D
550	0.5 1 1.5 2.5 5 7.5	0.6 1.3 1.9 3.2 6.4 9.6 12.8	3x1.75 3x3.51 3x5.26 3x8.77 3x17.5 3x26.3 3x35.1	50×150 50×150 50×150 60×150 75×175 75×265 75×265	21 21 21 18 6 12	6010 6020 6040 6060 6130 6150 6170	E E E C D

DISSEN TECHNIQUE

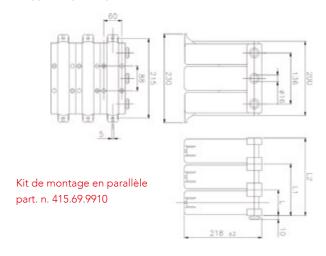
Bornes et goujon	Couple de fixation
Screw terminals	1.5 Nm
M12	11 Nm

Dimensions boîte Standard: C= 190x285x325 mm D= 250x360x345 mm E= 195x390x255 mm.

Pour que le dispositif de protection contre la surpression puisse fonctionner efficacement, il est nécessaire de laisser un espace d'au moins 30 mm. au-dessus de l'élément et utilisez des câbles flexibles pour la connexion.

DUCATI F50 MONO Long Life 41_NCondensateurs triphasé

La conception modulaire des unités **DUCATI F50** les rend particulièrement adaptées pour les systèmes de correction du facteur de puissance du transformateur fixe et la correction du facteur de puissance local des moteurs.


Le condensateur triphasé **DUCATI F50** est composé de 3 condensateurs monophasés connectés en triangle de la série MONO Long Life 4IN.

Caractéristiques générales

Gamme de puissance	5 ÷ 60 kVAr
Gamme de tension	415 ÷ 525 V
Fréquence nominale	50 Hz/60 Hz
Tolérance de capacité	-5 +10%
Service	Continu
Pertes diélectriques	≤ 0.2 W/kVAr
Duréè	≥110000h -25/D ≥130000h -25/C
Max dV/dt	≤ 100 V /µs
Classe de température	-25/D
Surintensité admissible In	4 x ln
Tenue au pic de courant	≤ 200 I _n
Bornes	Pins 3 x M8
Indice de protection	IP40
Connexion interne	Delta
Résistance de décharge	Internal (50 V after 60")
Matériel d'imprégnation	Insulating V2 class
Altitude	≤ 2000 m s.l.m.
Test de tension (CA) entre les bornes	2.15 U _n x 2"
Test de tension entre les bornes et l'enveloppe	3 kV x 10"
Normes	EN 60831 – 1/2

Un	Qn	Q (400 V)	In	Cn	L	Part n. 415.04.
(V)	(kVAr)	(kVAr)	(A)	(µF)	(mm)	
415	5	4.7	7.0	3x31	79 (1)	7010
	10	9.3	13.9	3x62	79 (1)	7015
	12.5	11.6	17.4	3x77	79 (1)	7018
	15	13.9	20.9	3x92	79 (1)	7020
	20	18.6	27.9	3x123	79 (1)	7025
	25	23.2	34.8	3x154	148 (2)	7030
	30	27.9	41.8	3x185	148 (2)	7035
	40	37.2	55.7	3x247	148 (2)	7040
	50	46.7	69.6	3x308	217 (3)	7045
450	5	4.0	6.4	3x26	79 (1)	7110
	10	7.9	12.8	3x52	79 (1)	7115
	12.5	9.9	16.1	3x66	79 (1)	7118
	15	11.9	19.3	3x79	79 (1)	7120
	20	15.8	25.7	3x105	79 (1)	7125
	25	19.8	32.1	3x131	148 (2)	7130
	30	23.7	38.5	3x157	148 (2)	7135
	40	31.6	51.4	3x210	148 (2)	7140
	50	39.5	64.2	3x262	217 (3)	7145
525	5 10 12.5 15 20 25 30 40 50 60	2.9 5.8 7.3 8.7 11.6 14.5 17.4 23.2 29.0 34.8	5.5 11.0 13.8 16.5 22.0 27.5 33.0 44.0 50.1 66.1	3x19 3x39 3x48 3x58 3x77 3x96 3x116 3x154 3x193 3x231	79 (1) 79 (1) 79 (1) 79 (1) 79 (1) 79 (1) 148 (2) 148 (2) 148 (2) 217 (3) 217 (3)	7210 7215 7218 7220 7225 7230 7235 7240 7245 7250

DESSIN TECHNIQUE

COMPOSANTS ET DIVERS

rEvolution R5, R8

rEvolution SERIES (R5, R8)

Les régulateurs de facteur de puissance sont des systèmes efficaces qui gèrent automatiquement les batteries de condensateurs pour compenser la puissance réactive absorbée par les charges afin d'éviter les pénalités imposées par les fournisseurs électriques. DUCATI energia, grâce à l'expérience et au savoir-faire acquis au fil des années dans la conception et la fabrication d'analyseurs de resau et de puissance, a développé une série innovante de régulateurs de puissance réactive: **rEvolution**.

La taille compacte, la technologie de ultime génération et la gamme complète de fonctions et options de communication de données rendent les régulateurs de la série **rEvolution** extrêmement adaptables à tout contexte d'application pour les systèmes de correction de facteur de puissance, pour les réseaux monophasés et triphasés, basse et moyenne tension. ou avec/sans la présence de systèmes de production d'énergie (p. ex. PV, cogénération).

Les différents modèles sont équipés de toutes les options de connectivité les plus courantes (radio sans fil, NFC, Ethernet, RS485, Bluetooth, USB), pour l'échange de données local avec la nouvelle application "**Ducati Smart Energy**", et pour le contrôle à distance des performances des équipements, état des batteries de condensateurs et des événements ayant une incidence sur les paramètres électriques. rEvolution supprime les modules d'extension supplémentaires qui augmentent la taille du regulateur; la profondeur réduite de seulement 57mm inclut toutes les options de communication et les relais supplémentaires. Le format de panneau 96x96 est conforme à la norme CEI 61554

Modél	Part. N.	Connexion	Relais
R5	415984050 NNNN	NFC	5
R5 485 radio	415984050 QNDN	NFC, radio, RS-485	5
R8 radio	415986080 NNDN	NFC, radio	8
R8 485 radio	415986080 QNDN	NFC, radio, RS-485	8
R8 ETH radio	415986080 ENDN	NFC, radio, Ethernet	8
R8 USB radio	415986080 NSDN	NFC, radio, USB	11
R8 BLT radio	415986080 NBDN	NFC, radio, Bluetooth	11
R8 485 BLT radio	415986080 QBDN	NFC, radio, RS-485, Bluetooth	11

App DUCATI Smart Energy

L'application dédiée "**DUCATI Smart Energy**" est conçue pour simplifier Les opérations de configuration et de contrôle de tous les équipements avec de nouveaux régulateurs **R5** et **R8**. La communication avec le smartphone peut avoir lieu

grâce à la connexion NFC standard à travers la gamme ou à travers bluetooth (en option sur R8).

Vous serez capable de gérer et d'organiser un nombre infini des régulateurs DUCATI, avec la commodité de l'interface graphique).

Caractéristiques et fonctions:

- Importation, modification et exportation faciles et intuitives de paramètres de configuration
- Mises à jour du firmware disponibles en temps réel
- Contrôle immédiate de l'état de l'équipement (alimentation batteries, manœuvres de contacteurs, etc.)
- Envoyer le fichier de configuration par e-mail

TÉLÉCHARGER L'APP

rEvolution R5

Contrôleur de puissance réactive

Le nouveau régulateur de facteur de puissance rEvolution R5 a été conçu pour simplifier l'installation et permettre un démarrage rapide et facile de l'unité CFP. Les modèles R5 sont équipés d'une technologie de connexion permettant l'échange de données de performance et d'état du système avec l'application Smartphone Smart Energy à proximité (via NFC) et à distance (RS485 / radio) pour le contrôle via le nouveau **ENERGY GEAR** et **ENERGY BRIDGE** enregistreurs de données.

Le grand écran avec des LED rouges lumineuses est facilement lisible dans toutes les conditions d'éclairage et de loin.

Le clavier à 5 boutons simplifie la navigation dans les menus et permet une configuration plus intuitive des paramètres de configuration. Une touche est dédiée au changement rapide du mode manuel au mode automatique et vice versa.

Les algorithmes de détection avancés détectent la phase dans laquelle le TC est installé et dans quelle direction, en réglant automatiquement les paramètres pertinents pour éviter les erreurs d'installation courantes. La double entrée d'alimentation 400VAC et 230VAC permet d'utiliser le contrôleur dans les réseaux monophasés avec neutre ou réseaux triphasés avec ou sans neutre.

Grâce à un microprocesseur puissant, **R5** calcule le facteur de puissance réel à partir du déplacement tension-courant de l'harmonique fondamentale à la tension nominale, et mesure en outre la distorsion harmonique totale de la tension (THDV%) et du courant (THDI%) avec un spectre global jusqu'à l'ordre 60ème harmonique.

Connexions intelligentes

La connexion NFC (disponible sur tous les modèles) permet un échange de données rapide avec l'application pour Smartphone de Ducat "Ducati Smart Energy App"i, tandis que les interfaces radio et RS485 en option permettent une communication permanente sans fil (868MHz) vers la passerelle ENERGY BRIDGE ou vers la centrale ENERGY GEAR respectivement.

Il est également possible de télécharger tous les journaux d'événements stockés dans la mémoire locale pour effectuer un diagnostic local sur le Smartphone (utile pour la maintenance sur site) ou à distance en temps réel.

OUCATI energy

Caractéristiques techniques

Alimentation:

- Tension nominale: 400 or 230 VAC
- Gamme de frequence: 45 ÷ 66 Hz
- Consommation d'énergie: 2.5 W 3 VA

Entrée de courant:

- Classe de Courant: 5 A (1 A programmable)
- Consommation d'entrée: < 1.8 VA

Relais de sortie:

- Nombre de sorties: 5 avec 1 borne commune
- Type de contact: NO (normalement ouvert)
- Maximum operating voltage: 440 VAC
- Capacité nominale: AC1 6 A 250 V~, AC15 1.5 A 440 V~

Alarmes:

- Surtension et surintensité
- Basse tension et courant fiable
- THD, et THD, seuils
- Température maximale avec double seuil (en option): ventilation forcée / alarme de température et Standby
- Correction du facteur de puissance insuffisante (basse cosφ)

Conditions d'environnement:

- Température de fonctionnement: -20 ÷ 70 °C
- Température de stockage: -30 ÷ 80 °C
- Tension d'isolation: 600 V~
- Humidité: < 80%
- Condensation: non autorisé

Enclosure:

- Format: 96x96 encastré
- Degré de protection: IP51 à l'avant IP20 arrière / bornes
- Bôite: 350g

RS485 interface:

- Modbus-RTU
- Ascii-Ducbus

Radio interface:

- Carrier frequency: 868 MHz
- Protocole: Modbus-RTU

NFC interface:

 Échange de données avec l'application smartphone via l'antenne (derrière l'écran))

Conformité aux normes:

- IEC/EN 61010-1
- IEC/EN 61000-6-2
- IEC/ EN 61000-6-4

rEvolution R8

Régulateur varmétrique

La nouvelle **rEvolution** est un régulateur de facteur de puissance innovant offrant des fonctions avancées, une large gamme de mesures et diverses solutions de communication de données, le tout concentré dans un design compact de 96x96 mm. Ces caractéristiques le rendent idéal pour les solutions CFP dans tous les types d'environnement et d'application.

Les différents modèles **R8** sont équipés de toutes les options de connectivité les plus utilisées (Bluetooth, USB, radio sans fil, NFC, Ethernet, RS485) pour l'échange de données locales (configuration, maintenance) et pour la surveillance à distance de l'état / performance de l'unité CFP .

Un guide d'utilisation clair, traduit en 9 langues, facilite l'utilisation de **rEvolution R8** pendant la mise en service et le fonctionnement normal du système PFC, avec des conseils utiles pour résoudre les problèmes liés aux connexions d'entrée du régulateur, le réglage des paramètres de configuration et en général aux événements qualitatifs de tension et de courant détectés par **R8**.

Le grand écran LCD à contraste élevé de 128 x 128 pixels avec rétroéclairage blanc a des capacités graphiques pour afficher des données, des formes d'onde, des histogrammes et des icônes.

The advanced detection algorithms can sense on which phase the CT is installed and in which direction, automatically setting the relevant parameters to avoid common installation errors.

Grâce à un microprocesseur puissant, **R5** calcule le facteur de puissance réel à partir du déplacement tension-courant de l'harmonique fondamentale à la tension nominale, et mesure en outre la distorsion harmonique totale de la tension (THDV%) et du courant (THDI%) avec un spectre global jusqu'à l'ordre 60ème harmonique.

Smart communications

Chaque modèle rEvolution R8, également la version de base, est équipé des fonctionnalités standard de communication et de gestion des données suivantes:

- Connexion NFC, pour le téléchargement / téléchargement des fichiers de configuration, des journaux d'événements et de l'état via l'App Smartphone DUCATI Smart Energy, "DUCATI Smart Energy"
- Mémoire intégrée avec stockage jusqu'à 1 an de données historiques Capteur alimenté par pile RTC
- Interface de communication Radio Wireless à 868 MHz pour la connexion à la passerelle ENERGY BRIDGE

Les modèles optionnels "485" disposent d'une interface RS485 opto-isolée avec résistance de terminaison intégrée. L'interface RS485 prend en charge le protocole de communication Modbus-RTU pour une connexion facile au Datalogger et à la passerelle DUCATI Energia ENERGY GEAR ou à d'autres périphériques tels que PC ou SCADA.Modèles optionnels "ETH" avec carte Ethernet intégrée et connecteur RJ45 opto-isolé avec auto-crossover fonction MDI / MDX; ils disposent à la fois d'un serveur Web intégré (pour une visualisation rapide des données via n'importe quel navigateur) et d'un support de protocole Modbus-TCP pour la connexion à distance.

Les modèles "USB" disposent d'une interface hôte USB pour télécharger des données à partir de la mémoire intégrée et / ou télécharger des mises à jour de firmware et des fichiers de configuration. Ils sont également équipés de 3 relais de sortie supplémentaires. Les modèles "BT" sont caractérisés par une interface Bluetooth pour la configuration et le contrôle de gestion de l'App Smartphone dédié et 3 relais de sortie supplémentaires. Les mises à niveau de Firmware peuvent être appliquées localement avec une clé USB ou via Bluetooth via l'application Smartphone Smartphone DUCATI, ou à distance pour les modèles avec des interfaces de communication à distance (sans fil radio, Ethernet, RS485).

Caractéristiques techniques

Alimentation:

- Tension nominale: 400 or 230 or 110 VAC
- Gamme de frequence: DC or 45 ÷ 66 Hz
- Consommation d'énergie: 2.5 W
- Consommation d'énergie Max 10 W (pour les models "USB ETH")

Tension en entrée:

- Champ de mesure: 50 ÷ 525 VAC
- Précision: 1% ± 0.5 digit

Courant en entré:

- Current rating: 5 A (1 A programmable)
- Input consumption: <1,8 VA
- Accuracy: 1% ± 0,5 digit

Relais en sortie:

- Nombre de sorties: 8 (11 pour les modèles "USB" et "BT")
- Tension de fonctionnement maximale NO contacts: 440 VAC
- Valeur de contact nominaleg NO/NC: AC1 6A 250 V~, AC15 1,5A -440 V~

Type de contact pour les modèles "USB" et "BT":

- 6 NO (commune C1)
- 1 NO (commune C2)
- 1 NO/NC (commune C3)
- 2 NO (commune C4)
- 1 NO (commune C5)

Alarmes:

- Surtension et surintensité
- Basse tension et courant faible
- THDV et THDI seuils
- Température maximale avec double seuil (en option): ventilation forcée
 / Alarme de température & Standby
- Correction du facteur de puissance insuffisante (basse cosφ)

Conditions d'environnement:

- Température de fonctionnement:: -20 ÷ 70 °C
- Température de stockage: -30 ÷ 80 °C
- Humidité relative: < 80%
- Condensation: non autorisé

Bôite:

- Format: 96x96 encastré
- Degré de protection: IP51 à l'avant IP20 arrière / bornes
- Poidst: 350 g.

Interface radio:

- Carrier frequency: 868 MHz
- Protocol: Modbus-RTU

NFC interface:

 Échange de données avec l'application smartphone via l'antenne (derrière l'écran)

RS485 interface:

• Protocols: Modbus-RTU, Ascii-Ducbus

Interface Ethernet:

- Connecteur RJ45 opto-isolé avec fonction de croisement automatique MDI / MDX
- Serveur Web intégré
- Modbus-TCP protocol

USB interface:

USB 2.0 Host-type

Interface Bluetooth:

Bluetooth Basse Consommation d'énergie

Conformité aux normes:

- IEC/EN 61010-1
- IEC/EN 61000-6-2
- IEC/ EN 61000-6-4

REGO12

Régulateur varmétrique

Le **REGO12** est un régulateur de facteur de puissance avec 12 relais de sortie de 144x144 mm.

Grâce à la connexion **RS-485**, le **REGO12** peut échanger des données avec d'autres instruments DUCATI energia connectés au réseau, effectuer des mesures et des acquisitions de données, les transmettre et les stocker sur un PC. Les algorithmes de programmation permettent la reconnaissance complètement automatique de la direction CT et de la phase sur laquelle est installé le TC, pour éviter d'éventuelles erreurs d'installation.

Modél	Part. N.	Connexion	Relais
REGO12	415989040	RS-485	12

Caractéristiques techniques

Alimentation:

- Tension nominale: 220/240 V 380/415 V
- Frequence: 50/60 Hz
- Consommation d'ènergie:15 VA max

Courant en entré:

• Cournt nominale: 5A

Relais en sortie:

- Nombre de sortie: 12
- Contact de interruption: 1500 VA 250 VAC
- Contact pour l'indication d'alarme à distance: NC (6 A 250 Vac)

Alarmes:

- Surtension
- Surchauffe
- Srucharge Harmonique
- Pas de correction de facteur de puissance (Basse cos cosφ)
- Pas de protection de tension

Conditions d'environnement:

- Température de fonctionnement: 40/+60 °C
- Température de stockage: -30/+80 °C
- Humidité relative: < 80%

Bôite:

- Format: 144x144 encastré
- Indice de protection frontale: IP 40
- Poids: 875 g

RS485 interface:

Ascii-Ducbus protocol

Conformité aux normes:

- IEC/EN 61010 1
- IEC/EN 50081 1

DUCNET ENERGY CLOUD

Introduction

Le système de contrôle d'énergie **DUCNET energ**y est la solution cloud de Ducati qui fournit des solutions de contrôle énergétique et de gestion de l'énergie conformes aux normes ISO50001, ISO14001, ISO 50001 et 2012/27 / UE. DUCNET est l'outil idéal pour tous les Energy Managers, qui peuvent ainsi accéder, de manière simple et automatique, à toutes les données énergétiques des centrales surveillées, afin de prendre des décisions stratégiques efficaces, réduire immédiatement le gaspillage d'énergie et vérifier les résultats en temps réel.

Caractéristiques principales

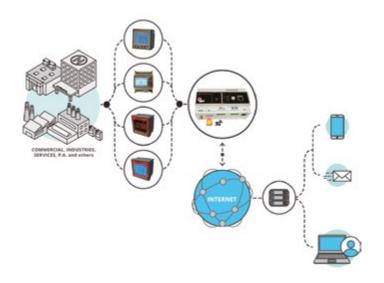
Le système DUCNET fournit un aperçu précis de la consommation d'énergie des données et de nombreuses données en temps réel liées au bon fonctionnement du réseau électrique et aux charges qu'il fournit. DUCNET peut également envoyer des alarmes par courriel et par SMS afin d'alerter immédiatement les gestionnaires d'installations de toute les anomalie comme des pannes électriques, des interruptions, une consommation d'énergie excessive, un basse facteur de puissance, une distorsion harmonique excessive, etc. rEvolution R5 et R8 pour partager non seulement les informations / données réseau, mais aussi l'état de l'équipement de correction du facteur de puissance. La configuration du système DUCNET, des enregistreurs de données et des passerelles **ENERGY GEAR** en option et des régulateur varmétrique R5 ou R8 peut être effectuée à distance via une interface Web (accessible via n'importe quel navigateur), sans nécessiter d'opérations sur site. Des informations de diagnostic sont également disponibles pour un contrôle immédiat de l'état de santé de le contrôle à distance et des points de collecte de données. Avec le système DUCNET Cloud, il est possible vérifier tous les clients de données énergetique et électriques connectés à Internet, tels que les PC, smartphones, tablettes, SmartTV, etc., sans avoir à gérer plusieurs installations logicielles ennuyeuses... Toutes les données seront stockées sur les serveurs DUCATI energia, sans avoir besoin d'installer et de manipuler des logiciels locaux ou de fournir un espace de stockage de données local sécurisé.

Le service collecte de manière autonome toutes les données et les stocke sur le nuage DUCNET; aucune action n'est requise par le client.

Principaux utilisateurs prévus

INDUSTRIE: es grandes usines et les utilisateurs à forte demande d'énergie, contraints par la loi d'utiliser des systèmes de gestion de l'énergie.

BÂTIMENTS PUBLICS & ADMINISTRATION: hôpitaux, écoles, municipalités, ministères, installations militaires, etc.


ENTRÉPRISES DE SERVICES: bâtiments et structures de bureaux de poste, banques, compagnies d'assurance, compagnies de téléphone, courriers, etc. **Chaînes de distribution**: grands magasins, centres commerciaux, hypermarchés, chaînes de magasins.

TOURISME: hôtels, aéroports, ports, campings.

RESIDENTIAL: la répartition des coûts énergétiques entre plusieurs utilisateurs connectés à un seul point d'approvisionnement.

ENERGY GEAR ET ENERGY BRIDGE

DUCATI Energia présente le système **ENERGY GEAR** Datalogger & Gateway et la passerelle **ENERGY BRIDG**E, conçus respectivement pour la gestion de l'énergie et le contrôle des unités de correction du facteur de puissance situées dans les installations industrielles distribuées, les filiales, les sites de production isolés ou les sites de service. Les principales fonctions d'**ENERGY GEAR** sont la lecture, le stockage et la communication des données issues des analyseurs d'énergie et de puissance, du régulateur de facteur de puissance rEvolution R5 et R8, des compteurs d'impulsions, du débitmètre et des capteurs. **ENERGY GEAR** stocke les données dans sa mémoire interne et les partage avec les services Cloud, les serveurs ou les PC locaux connectés au LAN. Le **ÉNERGY BRIDGE** est conçu pour établir une connexion via l'interface radio 868 MHz utilisée par les régulateur varmétrique rEvolution R5 et R8 pour lire et archiver les données de ceux-ci. Les données sont ensuite envoyées aux serveurs **DUCATI** via des connexions LAN / GPRS / UMTS.

ENERGY GEAR

ENERGY GEAR signifie flexibilité, facilité d'utilisation, haute fiabilité et disponibilité

ENERGY GEAR peut lire et stocker des données de:

- Les analyseurs de resau et regulateur d'énergie et de puissance DUCATI, pour la consommation d'énergie électrique et le contrôle du système
- DUCATI energia Capteurs de température et / ou d'humidité DUCATI pour l'intérieur et l'extérieur
- DUCATI energia Modules pour l'acquisition et le stockage des signaux numériques provenant des dispositifs à émission d'impulsions: les compteurs d'eau, de gaz, de la vapeur / air comprimé / fluides mètres, des compteurs de pièces, etc etc.
- Tout autre appareil de mesure avec port RS485 ou Ethernet et protocoles de communication MODBUS-RTU ou MODBUS TCP

ENERGY GEAR a une grande mémoire interne capable de stocker jusqu'à plusieurs années de données. La capacité de stockage globale peut être étendue en connectant une clé USB à l'avant de l'appareil. Les données sont stockées au format .xml ou .csv pour faciliter l'analyse successive, mais avec Modbus-TCP, il est également possible de faire une surveillance en temps réel. Un serveur web permet une configuration rapide depuis n'importe quel navigateur.

ENERGY GEAR fournit différents modes de communication:

- Transmission automatique à distance via resau LAN ou Internet Cloud via le port Ethernet
- Transmission automatique à distance ou téléchargement manuel via modem GPRS avec une carte SIM de données M2M
- Téléchargement local sur une clé USB connectée au port avant de l'appareil
- Téléchargement local sur PC via les ports USB ou Ethernet à l'avant de l'appareil

ENERGY GEAR vous permet de programmer un carnet d'adresses avec des e-mails et des numéros de téléphone auxquels les communications concernant les alertes ou les alarmes doivent être envoyées. Une consommation excessive, des anomalies ou des pannes d'électricité, des pannes et d'autres événements similaires peuvent être détectés et l'alerte pertinente peut être envoyée aux téléphones enregistrés ou aux smartphones via le service cloud **DUCNET**.

Part N.	Description
468001313GSPL	ENERGY GEAR Europe/Asia inc. alimentation, GPRS Modem Europe/Asia et Antenna
468001313ASPL	ENERGY GEAR America inc. alimentation, UMTS, Modem America and Antenna

ENERGY BRIDGE

Les principales caractéristiques de **ENERGY BRIDGE** sont la facilité d'installation, la flexibilité d'utilisation, la haute fiabilité.

ENERGY BRIDGE est conçu pour les installateurs et les utilisateurs qui, après l'activation complète des unités de correction de facteur de puissance équipées de régulateurs rEvolution R5 et R8, souhaitent connecter à distance les régulateurs / unités de correction de facteur de puissance.

Grâce à l'interface de communication radio sans fil, les principales caractéristiques de ENERGY BRIDGE sont la facilité / rapidité d'installation, la flexibilité et la haute fiabilité.

ENERGY BRIDGE connecter à un ou plusieurs régulateurs R5 et R8 via un 868 MHz radio channel (si disponible).

ENERGY BRIDGE ispose d'une mémoire interne capable de stocker jusqu'à 2 années de données. La mémoire peut être étendue en branchant une clé USB commune dans le port USB situé à l'avant de l'appareil.

ENERGY BRIDGE peut partager ces données de différentes manières avec les serveurs DUCATI:

- Avec Ethernet (port situé sur le devant de l'appareil) sur le réseau local, cela doit permettre une connexion Internet
- Port GPRS / UMTS avec une carte SIM data
- Grâce à une mémoire externe via le port USB HOST (situé sur le devant de l'appareil) et le téléchargement ultérieur vers le serveur Ducati grâce à un processus d'importation intégré dans l'interface Web DUCNET

Une fois que les données de R5, R8 sont sur les Serveurs Ducati, l'utilisateur peut les vérifier en se connectant au portail web **DUCNET**.

ENERGY BRIDGE permet une configuration facile via le serveur web via un navigateur commun localement ou à distance connecté à l'appareil.

Part N.	Description
468001342GWNF	ENERGY BRIDGE Europe/Asia inc. alimentation et GPRS Modem Europe/Asia
468001342AWNF	ENERGY BRIDGE America inc. alimentation et, UMTS Modem America

Tiroirs/Rack

La gamme actuelle de tiroirs DUCATI energia comprend ces séries:

- C160 gamme de puissance 20÷160 kVAr
- **C160-MINI** gamme de puissance 20÷160 kVAr
- **C50-L-MINI** gamme de puissance 25÷50 kVAr avec SAH self anti harmonique
- C100-L gamme de puissance 25÷100 kVAr avec SAH self anti harmonique

Ceux-ci peuvent être utilisés pour créer des systèmes automatiques de correction du facteur de puissance avec des structures existantes ou spéciales. Chaque tiroirs peut contenir jusqu'à 4 batteries de condenseurs.

Caractéristiques techniques

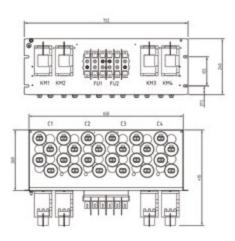
- Condensateurs monophasés MONO Long Life série 4IN en PPMh, pour service continu dans des conditions très exigeantes dans des environnements riches en harmoniques
- Tension nominale 415 450 525 V pour C160 et C160-MINI series et 480 V pour C50-L-MINI et C100-L series
- AH self anti harmonique avec frequence d'accord 189 Hz (seul pour C50-L-Mini et C100-L)
- Structure en tôle d'acier galvanisée
- Contacteurs conçus pour le contrôle des charges capacitives, équipés d'un limiteur de courant d'appel avec alimentation 230 V 50-60 Hz

Caractéristiques Generale

Tension nominale	400 V
Frequence	50 Hz
Tensione d'isolement	690 V
Usage	Indoor
Indice de protection	IP00
Service	Continu
Temperature	-5 +40 °C
Alimentation	3F + PE
Raccordement interne	FS17
Dispositifs de décharge	Sur chaque condensateur selon EN 60831
Fusible	NH-00 GL
Normes	EN 61921

DUCATI C160 Un - Cond = 415 V $THD_{I \text{ MAX-C}} \% \le 50\% \ THD_{I}\% \le 12\% \ Un \ 400V - 50Hz$

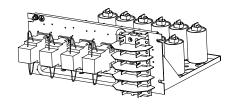
Part n. 415.04.	Qn (kVAr)	Q (400 V) (kVAr)	Puissance Batterie (kVAr)	In (A)	Puissance Dissipéè (W)	Poids (kg)
9010	20	18	2 x 10	27	24	20
9015	40	37	4 x 10	54	47	22
9020	60	55	$2 \times 10 + 2 \times 20$	80	72	22
9025	80	74	4 x 20	107	102	23
9030	100	92	3 x 20 + 40	134	127	23
9035	120	111	2 x 20 + 2 x 40	161	157	23
9040	140	130	20 + 3 x 40	188	190	24
9045	160	148	4 x 40	215	226	24

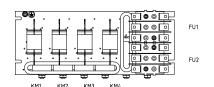

DUCATI C160 Un - Cond = 450 V $THD_{1 \text{MAX-C}} \% \le 70\% \ THD_{1}\% \le 20\% \ Un \ 400 \ V - 50 \ Hz$

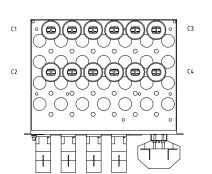
Part n. 415.04.	Qn (kVAr)	Q (400 V) (kVAr)	Puissance Batterie (kVAr)	In (A)	Puissance Dissipéè (W)	Poids (kg)
9110	20	15	2 x 10	23	20	20
9115	40	31	4 x 10	46	41	22
9120	60	47	2 x 10 + 2 x 20	68	60	22
9125	80	63	4 x 20	91	84	23
9130	100	79	3 x 20 + 40	114	107	23
9135	120	94	2 x 20 + 2 x 40	137	130	23
9140	140	110	20 + 3 × 40	160	155	24
9145	160	126	4 x 40	182	183	24

DUCATI C160 Un - Cond = 525 V $THD_{1 \text{MAX-C}} \% \le 85\% \ THD_{1}\% \le 27\% \ Un \ 400 \ V - 50 \ Hz$

Part n. 415.04.	Qn (kVAr)	Q (400 V) (kVAr)	Puissance Batterie (kVAr)	In (A)	Puissance Dissipéè (W)	Poids (kg)
9210	20	11	2 x 10	17	16	20
9215	40	23	4 x 10	34	32	22
9220	60	34	2 x 10 + 2 x 20	50	44	22
9225	80	46	4 x 20	67	59	23
9230	100	58	3 x 20 + 40	84	79	23
9235	120	69	2 x 20 + 2 x 40	101	94	23
9240	140	81	20 + 3 × 40	117	110	24
9245	160	92	4 x 40	134	127	24


DESSIN TECHNIQUE DUCATI C160




DUCATI C160-MINI Un - Cond = 415 V $_{\text{THD}_{\text{IMAX-C}}}$ % \leq 35% THD_I% \leq 10% Un 400 V - 50 Hz

Part n. 415.04.	Qn (kVAr)	Q (400 V) (kVAr)	Puissance Batterie (kVAr)	In (A)	Puissance Dissipéè (W)	Poids (kg)
3010	20	18	2 x 10	27	24	19
3015	40	37	4 x 10	54	47	21
3020	60	55	2 x 10 + 2 x 20	80	72	21
3025	80	74	4 x 20	107	102	22
3030	100	92	3 x 20 + 40	134	127	22
3035	120	111	2 x 20 + 2 x 40	161	157	22
3040	140	130	20 + 3 x 40	188	190	23
3045	160	148	4 x 40	215	226	23

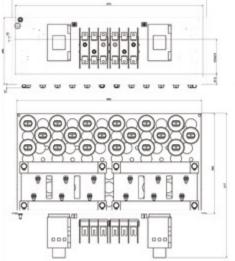
DESSIN TECHNIQUE DUCATI C160-MINI

DUCATI C160-MINI Un - Cond = 450 V $_{\text{THD}_{\text{IMAX-C}}}$ % \leq 65% THD_I% \leq 18% Un 400 V - 50 Hz

Part n. 415.04.	Qn (kVAr)	Q (400 V) (kVAr)	Puissance Batterie (kVAr)	In (A)	Puissance Dissipéè (W)	Poids (kg)
3110	20	15	2 x 10	23	20	19
3115	40	31	4 x 10	46	41	21
3120	60	47	2 x 10 + 2 x 20	68	60	21
3125	80	63	4 x 20	91	84	22
3130	100	79	3 x 20 + 40	114	107	22
3135	120	94	2 x 20 + 2 x 40	137	130	22
3140	140	110	20 + 3 × 40	160	155	23
3145	160	126	4 x 40	182	183	23

DUCATI C160-MINI Un - Cond = 525 V

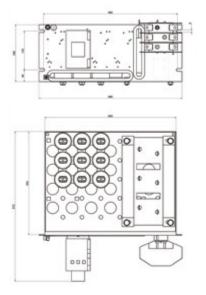
THD_{I MAX-C} % ≤ 80 THD_I% ≤ 25% Un 400 V - 50 Hz


Part n. 415.04.	Qn (kVAr)	Q (400 V) (kVAr)	Puissance Batterie (kVAr)	In (A)	Puissance Dissipéè (W)	Poids (kg)
3210	20	11	2 x 10	17	16	19
3215	40	23	4 x 10	34	32	21
3220	60	34	2 x 10 + 2 x 20	50	44	21
3225	80	46	4 x 20	67	59	22
3230	100	58	3 x 20 + 40	84	79	22
3235	120	69	2 x 20 + 2 x 40	101	94	22
3240	140	81	20 + 3 x 40	117	110	23
3245	160	92	4 × 40	134	127	23

DUCATI C100-L Un - Cond = 480 V FILTER 189 Hz(*) $THD_{i,MAX-c}$ % \leq 80%(*) $THD_{i,MAX-c}$ % \leq 80

Part n. 415.04.	Qn (kVAr)	Q (400 V) (kVAr)	Puissance Batterie (kVAr)	In (A)	Puissance Dissipéè (W)	Poids (kg)
9310	25	25	2 x 12.5	36	244	30
9315	37.5	37.5	12.5 + 25	54	293	32
9320	50	50	2 x 25	72	342	44
9325	75	75	50 + 25	108	412	60
9330	100	100	2 x 50	144	452	74

^{*} Autres tensions de fonctionnement et fréquences d'accord disponibles sur demande.



DUCATI C50-L-MINI Un - Cond = 480 V FILTER 189 Hz(*) $^{\rm THD_i\%} \le 80\%(^*)~ ^{\rm THD_v\%} \le 6\%(^*)~ ^{\rm Un}~ 400~ ^{\rm V} - 50~ ^{\rm Hz}$

Part n. 415.04.	Qn (kVAr)	Q (400 V) (kVAr)	Puissance Batterie (kVAr)	In (A)	Puissance Dissipéè (W)	Poids (kg)
3310	25	25	2 x 12.5	36	244	29
3315	37.5	37.5	12.5 + 25	54	293	31
3320	50	50	2 x 25	72	342	43
3325	50	50	50	72	337	38

^{*} Autres tensions de fonctionnement et fréquences d'accord disponibles sur demande.

DESSIN TECHNIQUE DUCATI C50-L-MINI

SAH - SELF ANTI HARMONIQUE

Lors du choix d'un système de correction du facteur de puissance pour les réseaux industriels caractérisés par la présence d'harmoniques (typiquement générés par l'utilisation de charges non linéaires telles que redresseurs, soudeurs, etc.), il faut prêter une attention particulière aux effets de résonance. Pour éviter de tels phénomènes dangereux, des inductances appropriées doivent être placées en série avec les condensateurs.

Il en résulte une absorption partielle de la composante harmonique critique et un effet de blocage vis-à-vis du réseau d'alimentation amont contenant des harmoniques. Le paramètre qui définit l'inductance est le degré d'inductance p où:

$p = X_1/X_C$

Où XL est la réactance inductive et XC l'inductance capacitive La présence du réacteur crée d'autres effets, par exemple la tension aux bornes du condensateur va augmenter à une valeur de:

 $U_c = U/(1 - p)$

Où:

UC = tension sur les condensateurs

U =tension du secteur

P =degré d'inductance

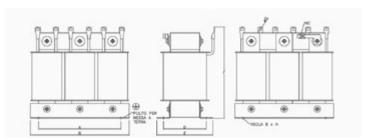
La puissance réactive fournie par la combinaison de réacteurs + condensateurs est différente de celle fournie par les condensateurs seuls. Lors du choix des composants à utiliser dans les équipements de correction de facteur de puissance avec réacteurs de barrage, il faut connaître les caractéristiques du réseau électrique dans lequel l'équipement sera installé et l'impact que le réacteur utilisé aura sur les condensateurs.

Les condensateurs doivent posséder des caractéristiques appropriées pour fonctionner de manière fiable dans le système.

DUCATI energia peut fournir des réacteurs et des condensateurs adaptés aux conditions d'utilisation les plus fréquentes.

Caractéristiques générales Réacteurs triphasés P = 7% (189 Hz) e P = 5,67% (210 Hz)

Tension du secteur	400V 500 Hz
Alimentation	Triphasé + PE
Distorsion harmonique de courant continu permis	2% In at 150 Hz 35% In at 250 Hz 15% In at 350 Hz
Isolation	690 V
Linéarité	Jusqu'à 1.8 lp/ln
Facteur de mérite	Q > 20
Valeur d'induction à In	< 0.8Tesla
Materials	Classe H
Protection thermique	Via thermistance avec contact NF


Caractéristiques générales Réacteurs triphasés P = 12.5% (141 Hz) e P = 14% (134 Hz)

Tension du secteur

Alimentation	Triphasé + PE
Distorsion harmonique de courant continu permis	2% In at 150 Hz 35% In at 250 Hz 15% In at 350 Hz
Isolation	690 V
Linéarité	Jusqu'à 1.8 lp/ln
Facteur de mérite	Q > 20
lValeur d'induction à In	< 0.8Tesla
Matériels	Classe H
Protection thermique	Via thermistance avec contact NF

DESSIN TECHNIQUE RÉACTEURS DE BLOCAGE

400V 500 Hz

REACTORS TRIPHASE* P= 7% (189 HZ) | P=5.67%(210HZ)

(*) Les couleurs des titres et des valeurs changent selon le type de réacteur

Part n. 315.99.	Puissance Ensortie (kVAr)	Inductance (mH)	I RMS (A)	Dimen (mm)	Dimension (mm)							Poids (kg)	C théorique (µF)	Condensateurs proposé 416.46.xxxx (**)
				A	В	С	D	E	F	G	Н			
1005	10	3x3.84	16.3	150	180	110	82	110	180	M	20	9.5	3x62	4200
1405	10	3x3.05	17.0	150	180	110	82	110	180	M	20	10	3x62	4200
1010	12.5	3x3.07	20.4	150	180	120	92	120	180	M	20	11	3x77	4080 + 4100
1510	12.5	3x2.45	21.5	150	180	120	92	120	180	M	20	11	3x78	5270
1012	15	3x2.55	26.8	200	240	130	85	118	166	9	20	13	3x94	4100 + 4150
1512	15	3x2.03	26.0	200	240	130	85	118	166	9	20	13	3x94	5330
1015	20	3x1.91	32.7	200	240	130	88	118	165	9	20	13	3x123	4100 + 4260
1515	20	3x1.53	35.0	200	240	130	88	118	165		20	14	3x	2x4200
1020	25	3x1.53	40.8	200	240	140	98	128	165	9	20	15	3x154	4200 + 4260
1520	25	3x1.23	42.0	200	240	140	98	128	165	9	20	15	3x	2×5270
1025	40	3x0.96	65.2	200	240	140	98	128	205	9	20	21	3x247	3x4260
1525	40	3x0.76	69.0	200	240	140	98	128	205		20	22	3x	3x4260
1030	50	3x0.77	81.6	200	240	150	113	143	220	9	20	25	3x308	3x4310
1530	50	3x0.60	86.0	200	240	150	113	143	220	9	20	26	3x	3x4310
1050	100	3x0.385	164	300	320	200	170	280	360	9	24	60	3x618	3x4380

REACTORS TRIPHASE* P= 12.5% (141 HZ) | P=14%(134HZ)

(*) Les couleurs des titres et des valeurs changent selon le type de réacteur

Part n. 315.99.	Puissance Ensortie (kVAr)	Inductance (mH)	I RMS (A)	Dimen (mm)	Dimension (mm)							Poids (kg)	C théorique (µF)	Condensateurs proposé 416.46.xxxx (**)
				A	В	С	D	E	F	G	Н			
1105	10	3x7.28	16.7	200	240	130	88	118	165	9	20	13	3x58	5080 + 5100
1505	10	3x8.15	17.5	200	240	130	88	118	165	9	20	14	3x58	5230
1110	12.5	3x5.82	20.9	200	240	140	98	128	165	7	20	15	3x73	5100 + 5150
1510	12.5	3x6.70	21.0	200	240	140	98	128	165	7	20	16	3x73	5260
1112	15	3x4.85	25.1	200	240	140	98	128	205	7	20	20	3x87	5310
1512	15	3x5.40	27.0	200	240	140	98	128	205	7	20	21	3x87	5310
1115	20	3x3.64	33.4	200	240	140	98	128	205	7	20	21	3x116	5150 + 5260
1515	20	3x4.10	35.0	200	240	140	98	128	205	7	20	22	3x	2x5230
1120	25	3x2.91	41.8	200	240	150	113	143	220	9	20	25	3x145	5150 + 5360
1520	2 5	3x3.35	43.0	200	240	150	113	143	220	9	20	26	3x	2x5260
1125	40	3x1.82	66.8	250	300	165	120	160	285	9	25	39	3x232	(2x5260) + 5310
1525	40	3x2.05	70.0	250	300	165	120	160	285		25	40	3x	3x5270
1130	50	3x1.46	83.6	250	300	175	130	170	285	9	25	45	3x290	4x5260
1530	50	3x1.65	87.0	250	300	175	130	170	285	9	25	46	3x	3x5270
1190	100	3x0.73	168	325	360	300	215	270	400	9	24	90	3x580	5x5370

(**) The suggested models refer to generic applications.

DUCATI energia reserves to propose and authorize the use of different capacitor types and ratings for specific applications.

REACTORS TRIPHASE* P= 7% (189 HZ) | P=5.67%(210HZ)

(*)Les couleurs des titres et des valeurs changent selon le type de réacteur

Part n. 315.99.	Puissance Ensortie 415V	Inductance (mH)	I RMS (A)	Dimen (mm)	Dimension (mm)								C théorique (µF)	Condensateurs proposé 416.46.xxxx (**)
	(kVAr)			A	В	С	D	E	F	G	Н			
1805	10	3x4.08	16.5	150	180	110	82	110	180	M	20	10	3x58	5230
1605	10	3x3.30	16.0	150	180	110	82	110	180	M	20	10	3x62	5230
1810	12.5	3x3.28	21.0	150	180	120	92	120	180	M	20	11	3x72	5270
1610	12.5	3x2.64	21.0	150	180	120	92	120	180	M	20	11	3x72	5270
1812	15	3x2.75	24.0	200	240	130	85	118	166	9	20	13	3x86	5310
1612	15	3x2.20	24.0	200	240	130	85	118	166	9	20	13	3x87	5310
1815	20	3x2.06	32.5	200	240	130	88	118	165	9	20	14	3x115	5370
1615	20	3x1.65	32.5	200	240	130	88	118	165		20	14	3x116	5370
1820	25	3x1.64	41.0	200	240	140	98	128	165	9	20	15	3x114	3150+3200
1620	25	3x1.32	40.5	200	240	140	98	128	165	9	20	15	3x145	3150+3200
1825	40	3x1.03	65.0	200	240	140	98	128	205	9	20	22	3x230	3260+3310
1625	40	3x0.82	65.0	200	240	140	98	128	205	9	20	22	3x233	3260+3310
1830	50	3x0.82	81.0	200	240	150	113	143	220	9	20	26	3x287	3310+3360
1630	50	3x0.66	81.0	200	240	150	113	143	220	9	20	26	3x291	3310+3360

REACTORS TRIPHASE* P= 12.5% (141 HZ) | P=14%(134HZ) (*)Les couleurs des titres et des vale changent selon le type de réacteur

(*)Les couleurs des titres et des valeurs

Part n. 315.99.	Puissance Ensortie 415	Inductance (mH)	I RMS (A)	Dimen (mm)	Dimension (mm)								C théorique (µF)	Condensateurs proposé 416.46.xxxx (**)
	(kVAr)			A	В	С	D	E	F	G	Н			
1905	10	3x7.88	16.5	200	240	130	88	118	165	9	20	14	3x54	4150
1705	10	3x9.92	16.5	200	240	130	88	118	165	9	20	14	3x53	4150
1910	12.5	3x6.26	20.5	200	240	140	98	128	165	7	20	16	3x68	4200
1710	12.5	3x7.16	20.0	200	240	140	98	128	165	7	20	16	3x66	4200
1912	15	3x5.25	24.5	200	240	140	98	128	205	7	20	21	3x81	4260
1712	15	3x5.91	25.0	200	240	140	98	128	205	7	20	21	3x80	4260
1915	20	3x3.97	32.5	200	240	140	98	128	205	7	20	22	3x106	4310
1715	20	3x4.46	33.0	200	240	140	98	128	205	7	20	22	3x106	4310
1920	25	3x3.15	41.0	200	240	150	113	143	220	9	20	26	3x135	5230+5270
1720	25	3x3.56	41.0	200	240	150	113	143	220	9	20	26	3x133	5230+5270
1925	40	3x1.97	65.0	250	300	165	120	160	285	9	25	40	3x216	2x4310
1725	40	3x2.23	65.0	250	300	165	120	160	285	9	25	40	3x212	3x4310
1930	50	3x1.56	80.0	250	300	175	130	170	285	9	25	46	3x270	3x5310
1730	50	3x1.78	81.5	250	300	175	130	170	285	9	25	46	3x266	3x5310

(*) The suggested models refer to generic applications.

DUCATI energia reserves to propose and authorize the use of different capacitor types and ratings for specific applications.

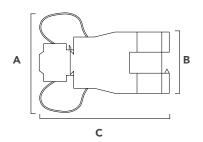
CONTACTEURS

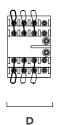
Lorsque vous choisissez des contacteurs de commutation pour les condensateurs utilisés pour compenser la puissance réactive présente dans le réseau, vous devez tenir compte de plusieurs aspects:

- En étant sous tension le condensateur est connecté en parallèle au réseau inductif et le circuit oscillant produit en connectant le condensateur au réseau se traduira par le passage d'un courant haute fréquence (de 3 à 15 kHz), qui peut être 160 fois plus grand que le courant In pendant 1 ou 2 ms
- La présence de courants harmoniques et la tolérance par rapport à la tension du secteur déterminent le passage continu, à l'intérieur du circuit, d'un courant dont la valeur est environ 1,3 fois supérieure au courant nominal In du condensateur
- En raison des tolérances autorisées par le fabricant, la puissance exacte d'un condensateur peut être 1,10 fois supérieure à la puissance nominale

Le contacteur utilisé doit donc être capable de travailler avec:

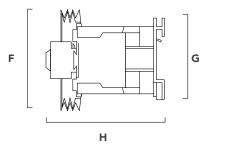
- Courant de point élevé, quoique transitoire, pendant la phase de fermeture
- Un courant de fermeture qui peut être 1,43 fois plus élevé que le courant nominal du condensateur


Les contacteurs proposés par DUCATI Energia sont spécifiquement conçus pour fonctionner dans ces conditions.


Sélectionnez le type de contacteur en fonction de la tension de travail et de la puissance effective (en kVAr) de la batterie de condensateurs à réguler.

Part n. 315.99.	kVAr 50 ∂ ≤ 55°0		Conta		Frequence exploitation maximale	Endurance électrique avec charge nominale
	200 V 240 V	400 V 440 V	NA	NC	Commutation par heure	nominale
						Commutation
1143	6.7	12.5	1	1	240	200000
1142	10	20	1	1	240	100000
1141	15	25	1	1	240	100000
1140	20	40	1	2	100	100000
1139	40	60	1	2	100	100000

(*)Température moyenne sur 24h selon les normes IEC 70 et 851.


Bobine 230 VAC 50/60 Hz pour toutes les tailles. ATTENTION: Les condensateurs doivent être complètement déchargés avant d'être mis sous tension par des contacts de fermeture (tension max aux bornes <50 V).

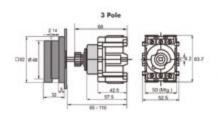
315.99	A (mm)	B (mm)	C (mm)	D(mm)
1143	130	74	117	45
1142	140	84	130	56
1141	140	84	135	56

T T T T
0101000
"'0''0''

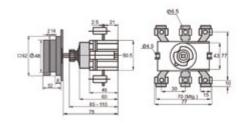
315.99	F (mm)	G (mm)	H (mm)	I (mm)
1140	180	127	150	75
1139	200	127	157	35

SECTIONNEURS

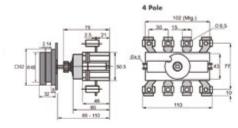
DUCATI energia propose une gamme complète de sectionneurs modulaires pour toutes les applications comme:


- Sectionneurs principal d'entrée de service des Transformateurs et des Busbarres
- Système de distribution d'alimentation CA ou CC
- Commutation et isolation des moteurs, des condensateurs ou des équipements de contrôle industriel

Les sectionneurs Ducati ont une taille compacte et leur installation est rapide et facile. La poignée dans les interrupteurs-sectionneurs a un arbre télescopique. Il permet l'installation du même sectionneur dans des installations de profondeur différente, sans aucune modification ou ajout aux enceintes. Quatre trous de fixation de la poignée sur la porte permet la rotation de dernière minute de l'interrupteur à l'intérieur du panneau de 90 degrés de chaque côté comme par commodité, à nouveau sans aucune modification à la porte. Ces fonctionnalités qui permettent de gagner du temps augmentent la facilité et la flexibilité de l'installation et réduisent également les coûts d'installation. L'interverrouillage de porte empêche l'ouverture en position ON, protégeant l'opérateur contre un incident accidentel.

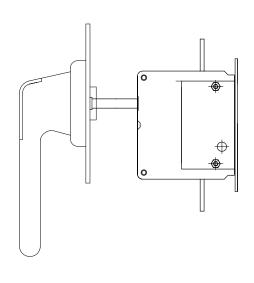

Caractéristiques communes		
Conformité aux normes	-	IEC 60947 Pt.3 e IS 13947 Pt.3
Tension de fonctionnement nominale (Ue)	V	415
Fréquence de fonctionnement	Hz	50/60
Indice de pollution selon IEC / IC	-	3
Temp. de Service ambiant / cabine.	°C	55
Indice IP après le montage	-	IP 54
Nombre de pôles (4ème pôle toujours 100% évalué dans 4 commutateurs de poteau)	-	3P/4P

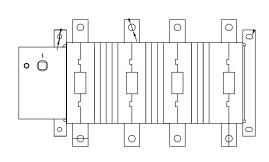
Courant nominale		40	63	80	125	160
Nombre de pôles (part. n. 315.99)	3	.0200	.0201	.0202	.0203	.0204
(part. II. 313.77)	4	.0597	.0598	.0599	.0600	.0601
Tension nominale	V	415	415	415	415	415
Tension de fonctionnement maximale	V	690	690	690	690	690
Frequence	Hz	50/60	50/60	50/60	50/60	50/60
Tension d'isolement	V	750	750	750	750	750
Courant de foncionnement nominale	А	40	63	80	125	160
Puissance nominale condensateurs	kVAr	20	35	45	70	80
Temp de résistance à courant lcw (1 sec)	kA	1	1	1.5	2.5	5
Endurance mécanique	cycles	25000	25000	25000	25000	25000
Taille des bornes pour les cosses de câble	Sq mm	16	25	25	70	95
Couple de serrage	Nm	2	2	4	6	6


DISSEN TECHNIQUE SECTIONNEUR

63A Type rotatif 3 Pole

100A & 125A Type rotatif 3 Pole

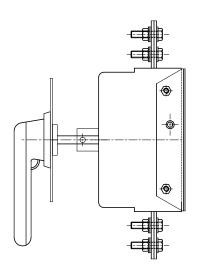


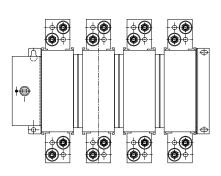

63A - 100A & 125A Type rotatif 4 Pole

SECTIONNEURS

Courant nominale		250	400	630	800
Nombre de pôles (part. n. 315.99)	3	.0205	.0206	.0207	.0208
(part. II. 3 13.77)	4	.0602	.0603	.0604	.0605
Tension nominale	V	415	415	415	415
Tension de fonctionnement maximale	٧	690	690	690	690
Frequence	Hz	50/60	50/60	50/60	50/60
Tension d'isolement	V	1000	1000	1000	1000
Courant de foncionnement nominale	А	250	400	630	800
Puissance nominale condensateurs	kVAr	125	200	315	400
Temp de résistance à courant lcw (1 sec)	kA	8	17	17	17
Endurance mécanique	cycles	10000	10000	10000	10000
Taille des bornes pour les cosses de câble	Sq mm	120	300	400	640
Couple de serrage	Nm	12	25	45	45

DESSIN TECHNIQUE SECTIONNEURS 400A - 800A




Valeurs	A B L			Р	Q	S	Т		
	3P	4P		3P	4P				
400A	211	257	205	151	197	46	25	4	11
603A	244	306	223	183	245	62	40	4	13.5
800A	260	330	223	199	269	70	40	5	13.5

SECTIONNEURS

DESSIN TECHNIQUE SECTIONNEURS 1000A - 1600A

Courant nominale		1000	1250	1600
Nombre de pôles (part. n. 315.99)	3	.0209	.0210	.0211
	4	.0606	.0607	.0608
Tension nominale	V	415	415	415
Tension de fonctionnement maximale	V	690	690	690
Frequence	Hz	50/60	50/60	50/60
Tension d'isolement	V	1000	1000	1000
Courant de foncionnement nominale	А	1000	1250	1600
Puissance nominale condensateurs	kVAr	500	630	800
Temp de résistance à courant lcw (1 sec)	kA	50	50	50
Endurance mécanique	cycles	10000	10000	10000
Taille des bornes pour les cosses de câble	Sq mm	-	-	-
Couple de serrage	Nm	70	70	70

Valeurs	A		L		Т	
	3P	4P	3P	4P		
1000A	383	483	318	418	8	
1250A	383	483	318	418	8	
1600A	383	483	318	418	10	

BATTERIES DE COMPENSATION D'ÈNERGIE REACTIVE

CRITÈRES DE SÉLECTION

Pourquoi compenser?

Il y a nombreux objectifs qui doivent être poursuivis dans la planification d'un système électrique. Parmi les mesures qui permettant d'optimiser l'électricité, l'amélioration du facteur de puissance des systèmes électriques est sans doute l'une des plus importantes. Si nous quantifions cet aspect du point de vue de l'utilité, l'augmentation du facteur de puissance de fonctionnement moyen du réseau de 0,7 à 0,95 signifie:

- C Réduction de 45% des coûts dus aux pertes ohmiques dans le réseau
- Augmentation du potentiel des usines de production et de distribution de 35%

L'utilisateur qui corrige le facteur de puissance dans ses usines obtient ces avantages:

- Pour éviter les pénalités du fournisseur d'énergie
- Il réduit le courant absorbé et optimise le système électrique
- Il réduit les chutes de tension et les pertes dues à l'effet Joule

Comment compenser

La solution technique la plus appropriée est de mettre sur chaque charge son propre condensateur de correction de facteur de puissance à inclure avec le variateur (CFP distribué). La correction du facteur de puissance la plus efficace est cependant celle qui implique l'installation d'une batterie automatique sur les barres du tableau de distribution (PFC centralisé) et, si nécessaire, l'installation de batteries de condensateurs fixes pour la correction des transformateurs, moteurs asynchrones et toutes les charges qui absorbent des quantités importantes d'énergie réactive. Pour les machines électriques telles que les moteurs asynchrones et les transformateurs, il est souvent utilisé comme correction de facteur de puissance fixe, la plupart du temps déterminée sur les valeurs obtenues à partir des tables.

Comment calculer

Le calcul de la batterie de condensateurs à installer dans une installation est simple: tenu compte du $\cos\phi$ du système sans correction (souvent obtenue à partir des factures électriques) et du $\cos\phi$ atteindre, l'ènergie réactive nécessaire pour atteindre le facteur de puissance souhaité est obtenu par quelques calculs:

 $Qc = P \cdot (tan \phi_0 - tan \phi_1) = P \cdot K$

P = Puissance active

 $\cos \phi_0 = \cos \phi$ du système sans correction

 $cos \mathbf{\Phi}_1 = cos \mathbf{\Phi}$ objectif

Qc = puissance réactive du système CFP à installer

 $K=given \ cos \pmb{\phi}_{\scriptscriptstyle 0} \ and \ cos \pmb{\phi}_{\scriptscriptstyle 1} \ K$ is derived from the table below

Si les $\cos\phi_0$ du système sont inconnues, le calcul de la puissance réactive requise pour la compensation peut être fait à partir des données trouvées sur les factures du fournisseur d'énergie ou lues directement à partir du compteur d'énergie de l'entreprise.

Connaissant la puissance active [kW] P et la puissance réactive [kVAr] Q du système, ou l'énergie active [kWh] et l'énergie réactive [kVArh], la formule

suivante peut être utilisée:

 $Q/P = tan \Phi$

La valeur $tan \Phi$ ainsi calculée peut être utilisée avec la table pour calculer la puissance réactive de l'équipement CFP nécessaire pour corriger le FP à la valeur désirée. Pour le contrôle des paramètres électriques du système, nous suggérons l'installation d'un ou plusieurs analyseurs de réseau, fournissant des mesures de tous les paramètres caractérisant le système et les charges. DUCATI Energia propose une gamme complète d'analyseurs de réseau et de systèmes de contrôle.

Notes de référence

Les condensateurs et l'unité de correction automatique du facteur de puissance doivent être installés dans des zones bien ventilées.

L'air devrait circuler librement à travers les bouches d'aération. La température d'environnement doit être conforme aux normes EN 60831-1 / 2. Si le système soumis à la correction du facteur de puissance possède des systèmes de conversion statique AC / DC (par exemple pour le fonctionnement des moteurs DC, des systèmes d'alimentation ininterrompus, etc.), des courants harmoniques sont générés et peuvent causer des surcharges de courant.

DUCATI energia peut fournir un équipement correctement protégé adapté à une utilisation dans de tels systèmes ainsi que des systèmes de filtres conçus pour éliminer les composants harmoniques.

Lorsque les condensateurs sont utilisés dans un équipement automatique, assurez-vous de vérifier que le temps de réponse du régulateur est supérieur au temps de décharge du condensateur. Si ce n'est pas le cas, des résistances de décharge appropriées doivent être installées. L'utilisation de connexions rigides doit être évitée avec des condensateurs cylindriques afin d'éviter de bloquer l'intervention du dispositif de surpression. Pour cette raison, au moins 3 cm doivent être laissés entre les bornes et toute surface au-dessus du condensateur positionné plus en haut.

Dans l'équipement automatique, l'intégrité des résistances de pré-charge doit être vérifiée chaque fois qu'il complete les 10 000 opérations ou au moins une fois par an. Prévoir de remplacer les contacteurs toutes les 100 000 opérations.

La garantie ne couvre pas les problèmes résultant de l'exploitation:

- En présence de surcharges harmoniques excessives (> 1.3 ln, > 1.1 Un.)
- Contacteurs avec contacts électriques usés ou résistances de précharge interrompues

Notes d'installation

Comme requis par les normes, il est nécessaire de fournir une protection adéquate contre les courts-circuits et les surcharges (par disjoncteur magnétique / thermique ou fusibles) pour la ligne alimentant les unités CFP. La protection doit être dimensionnée pour les courants capacitifs (environ 1,45 fois le courant nominal de l'équipement) et en tenant compte des valeurs de courant de court-circuit de courte durée attendues dans le point d'installation et durables par l'équipement CFP.

FACTEUR K Tableau complet à la page 64.

Existin	ng values	Target cosφ										
tgφ	cosφ	0.90	0.91	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.99	1.00
0.72	0.81	0.240	0.268	0.298	0.329	0.361	0.395	0.432	0.473	0.521	0.581	0.724
0.70	0.82	0.214	0.242	0.272	0.303	0.335	0.369	0.406	0.447	0.495	0.556	0.698
0.67	0.83	0.188	0.216	0.246	0.277	0.309	0.343	0.380	0.421	0.469	0.530	0.672
0.65	0.84	0.162	0.190	0.220	0.251	0.283	0.317	0.354	0.395	0.443	0.503	0.646

Critères de choix de l'équipement en fonction des conditions du réseau

Une fois que la puissance maximale requise a été déterminée comme dans les sections précédentes, le choix du type d'équipement à adopter doit être basé sur les conditions du réseau électrique et les types de charges présentes. Le tableau de sélection ci-dessous, établi sur la base des caractéristiques générales de l'installation (et donc non utilisable

(250 - 600 kVAr)

aux fins de la planification), vise à fournir une indication du système de compensation d'énergie reactive généralement adapté aux conditions les plus fréquemment rencontrées; electrical systems with mains voltage of 400V-50Hz, characterized by the presence of distorting loads with a spectrum composed of 5th, 7th, 11th and 13th harmonics.

SERIES		THDi < 12% (THDic <50%)	THDi < 20% (THDic < 70%)	THDi < 27% (THDic < 85%)	THDi < 80% (THDic < 95%)	THDi < 80% (THDic <100%)	PV system
Batteries fix	xe de Co	mpensation	d'énergie re	active			
DUCATI F120 (5 - 120 kVAr)		Un = 415 V	Un = 450 V	Un = 525 V	Un = 525 V	Un = 525 V	
Batteries au	ıtomatiq	ue de Comp	ensation d'éi	nergie reacti	ve		
DUCATI 50-M (5 - 50 kVAr)		Un = 415 V	Un = 450 V	Un = 525 V			Un ≥ 450 V
DUCATI 200-M (60 - 200 kVAr)		Un = 415 V	Un = 450 V	Un = 525 V			Un ≥ 450 V
DUCATI 400-M (220 - 400 kVAr)		Un = 415 V	Un = 450 V	Un = 525 V			Un ≥ 450 V
DUCATI 1600-R (240-1600 kVAr)		Un = 415 V	Un = 450 V	Un = 525 V			Un ≥ 450 V
Batteries au	ıtomatiq	ue de Comp	ensation ave	c SAH			
DUCATI 170-ML (25,5-170 kVAr)	A	~	~	~	✓		~
DUCATI 1000-RL (150 -1000 kVAr)		~	✓	✓	✓		✓
DUCATI 1000-RL/HP (132 - 1056 kVAr)		*	✓	✓	~	~	✓
Batteries au	ıtomatiq	ue de Comp	ensation en t	temps réel			
DUCATI 1000-RL/S	.]	~	~	~	~		~

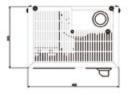
DUCATI F120

Batteries fixe de Compensation d'énergie reactive

Caractéristiques techniques

- Condensateurs monophasés MONO Long Life 4IN en PPMh, pour un fonctionnement continu dans des conditions extrêmement exigeantes dans des environnements riches en harmoniques. Tension nominale 415V, 450V, 525V
- Structure extérieure en acier vernie avec de la poudre époxydes couleur RAL 703
- Sectionneur omnipolaire, avec blocage de la porte, et courant nominal
 1.45In selon la norme CEI EN

Caractéristiques générales


Tension nominale	400 V
Frequence	50 Hz
Tension d'isolement	690 V
Ventilation	Natural
Usage	Intérieur
Indice de protection	IP 30
Service	Continu
Temperature	-5 +40 °C
Alimentation	3F + PE
Entrée du câble	Тор
Connexion interne	FS17
Dispositifs de décharge	Sur chaque condensateur
Fusible	NH-00 GL
Normes	IEC 61439 IEC 61921

DESSIN TECHNIQUE DUCATI F120

DUCATI F120 Un cond = 415 V

Part n. 415.04.	Qn (kVAr)	Q (400 V) (kVAr)	In (A)	In sw. (A)	LxPxH (mm)	Poids (kg)
8005	5	4.6	7	40	400x270x400	15
8007	10	9.3	13	40	400x270x400	15
8010	20	18.6	27	63	400×270×400	17
8015	40	37.2	54	80	400x270x400	17
8020	60	55.7	80	125	400x270x400	21
8025	80	74.3	107	125	400x270x600	30
8030	100	92.9	134	250	400x270x1000	32
8035	120	111.5	161	250	400x270x1000	33

DUCATI F120 Un cond = 450V

Part n. 415.04.	Qn (kVAr)	Q (400 V) (kVAr)	In (A)	In sw. (A)	LxPxH (mm)	Poids (kg)
8105	5	4.0	6	40	400x270x400	15
8107	10	7.9	11	40	400x270x400	15
8110	20	15.8	23	63	400x270x400	17
8115	40	31.6	46	80	400x270x400	17
8120	60	47.4	68	125	400x270x400	21
8125	80	63.2	91	125	400x270x600	30
8130	100	79.0	114	250	400x270x1000	32
8135	120	94.8	137	250	400x270x1000	33

DUCATI F120 Un cond = 525 V

Part n. 415.04.	Qn (kVAr)	Q (400 V) (kVAr)	In (A)	In sw. (A)	LxPxH (mm)	Poids (kg)
8205	5	2.9	4	40	400x270x400	15
8207	10	5.8	8	40	400x270x400	15
8210	20	11.6	17	63	400x270x400	17
8215	40	23.2	34	80	400x270x400	17
8220	60	34.8	50	125	400x270x400	21
8225	80	46.4	67	125	400x270x600	30
8230	100	58.0	84	250	400x270x1000	32
8235	120	69.7	101	250	400x270x1000	33

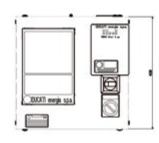
(H)

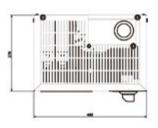
DUCATI 50-M

Batteries automatique de Compensation d'énergie reactive

Caractéristiques techniques

- Condensateurs monophasés MONO Long Life 4IN en PPMh, pour un service continu dans des conditions très exigeantes dans des environnements riches en harmoniques. Tension nominale 415 V, 450 V, 525 V
- Série de régulateur de facteur de puissance START&GO. Aucune configuration requise (détection automatique TC et démarrage automatique), rapide et conviviale. Adéquat pour les centrales de cogénération comme PV
- Structure extérieure en acier vernie avec de la poudre époxydes couleur RAL 703
- Sectionneur omnipolaire, avec blocage de la porte, et courant nominal 1.45In selon la norme CEI EN
- Contacteurs conçus pour le contrôle des charges capacitives, équipés d'un limiteur de courant d'appel avec alimentation 230 V 50-60 Hz




Caractéristiques générales

Tension nominale	400 V
Frequence	50 Hz
Tension d'isolement	690 V
Ventilation	Natural
Usage	Intérieur
Indice de protection	IP 30
Service	Continu
Temperature	-5 +40 °C
Alimentation	3F + PE + N
Entrée du câble	Тор
Connexion interne	FS17
Dispositifs de décharge	Sur chaque condensateur
Fusible	NH-00 GL
Normes	IEC 61439 le cas échéant IEC 61921
I _{SH}	50 kA (conditionné par le dispositif de protection en amont)

DESSIN TECHNIQUE DUCATI 50-M

DUCATI 50-M Un - Cond = 415 V $THD_{I \text{ MAX-C}} \% \le 50\% \ THD_{I}\% \le 12\% \ Un \ 400 \ V - 50 \ Hz$

Part n. 415.04	Qn (kVAr)	Q (400 V) (kVAr)	Puissance Batterie (kVAr)	Gradins	In (A)	In sw. (A)	LxPxH (mm)	Poids (kg)
0010	5	4.7	0.7 + 1.4 + 2.9	7	7	40	400x270x400	15
0015	7.5	7.0	1.1 + 2.1 + 4.3	7	10	40	400x270x400	15
0020	10	9.3	1.4 + 2.9 + 5.7	7	13	40	400x270x400	16
0025	12.5	11.6	2.5 + 2 x 5	5	17	40	400x270x400	16
0030	17.5	16.3	2.5 + 5 + 10	7	23	40	400x270x400	16
0035	20	18	2 x 5 + 10	4	27	63	400x270x400	17
0040	25	23	5 + 2 x 10	5	34	63	400x270x400	17
0045	35	32	5 + 10 + 20	7	47	80	400x270x400	18
0050	40	37	2 x 10 + 20	4	54	80	400x270x400	18
0055	50	46	10 + 2 × 20	5	68	80	400x270x400	19

DUCATI 50-M Un - Cond = 450 V $THD_{i,MAX-C}$ % \leq 70% $THD_{i,M}$ \leq 20% Un 400 V - 50 Hz

Part n. 415.04	Qn (kVAr)	Q (400 V) (kVAr)	Puissance Batterie (kVAr)	Gradins	In (A)	In sw. (A)	LxPxH (mm)	Poids (kg)
0210	20	15	2 x 5 + 10	4	23	63	400x270x400	17
0215	25	19	5 + 2 x 10	5	29	63	400×270×400	17
0220	35	27	5 + 10 + 20	7	40	80	400x270x400	18
0225	40	31	2 x 10 + 20	4	46	80	400×270×400	18
0230	50	39	10 + 2 x 20	5	57	80	400x270x400	19

DUCATI 50-M Un - Cond = 525 V

 $THD_{IMAX-C} \% \le 85\% THD_{I}\% \le 27\% Un 400 V - 50 Hz$

Part n. 415.04	Qn (kVAr)	Q (400 V) (kVAr)	Puissance Batterie (kVAr)	Gradins	In (A)	In sw. (A)	LxPxH (mm)	Poids (kg)
0310	20	11	2 x 5 + 10	4	17	63	400x270x400	17
0315	25	14	5 + 2 x 10	5	21	63	400×270×400	17
0320	35	20	5 + 10 + 20	7	29	80	400x270x400	18
0325	40	23	2 x 10 + 20	4	34	80	400×270×400	18
0330	50	29	10 + 2 x 20	5	42	80	400×270×400	19

DUCATI 200-M

Batteries automatique de Compensation d'énergie reactive

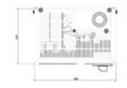
Caractéristiques techniques

- Condensateurs monophasés MONO Long Life 4IN en PPMh, pour un service continu dans des conditions très exigeantes dans des environnements riches en harmoniques. Tension nominale 415 V, 450
- Régulateur de facteur de puissance série rEvolution R5. Connexion NFC pour l'échange de la configuration avec l'application "DUCATI Smart Energy". Auto-détection de la direction et de la position du TC, pour faciliter les opéracions de l'installation. Adéquat pour les centrales de cogénération comme PV
- Structure extérieure en acier vernie avec de la poudre époxydes couleur RAL 703
- Sectionneur omnipolaire, avec blocage de la porte, et courant nominal 1.45In selon la norme CEI EN
- Contacteurs conçus pour contrôler les charges capacitives, équipés d'un limiteur de courant d'appel avec alimentation 230 V 50 - 60 Hz

Caractéristiques générales

Tension nominale	400 V
Frequence	50 Hz
Tension d'isolement	690 V
Ventilation	Natural
Usage	Intérieur
Indice de protection	IP30 - IP54
Service	Continu
Temperature	-5 +40 °C
Alimentation	3PH + PE + N (Up to 80 kVAr) 3PH + PE (Qn > 80 kVAr)
Entrée du câble	Тор
Connexion interne	FS17
Dispositifs de décharge	Sur chaque condensateur
Fusible	NH-00 GL
Normes	IEC 61439 le cas échéant IEC 61921
I _{SH}	50 kA (conditionné par le dispositif de protection en amont)




DUCATI 200-M Un - Cond = 415 V IP30

 $THD_{IMAX-C} \% \le 50\% THD_{I}\% \le 12\% Un 400 V - 50 Hz$

Part n. 415.04	Qn (kVAr)	Q (400 V) (kVAr)	Puissance Batterie (kVAr)	Gradins	In (A)	In sw. (A)	LxPxH (mm)	Poids (kg)
0060	60	55	2 x 10 + 2 x 20	6	80	125	400x270x600	30
0065	70	65	10 + 3 × 20	7	94	125	400x270x600	35
0070	80	74	2 x 10 + 20 + 40	8	107	125	400x270x600	35
0075	90	83	10 + 2 × 20 + 40	9	121	250	400x270x1000	40
0800	100	92	2 x 10 + 2 x 20 + 40	10	134	250	400x270x1000	45
0085	120	111	2 x 10 + 20 + 2 x 40	12	161	250	400x270x1200	50
0090	140	130	20 + 3 × 40	7	188	400	400x270x1200	55
0095	160	148	2 x 20 + 3 x 40	8	215	400	400x270x1200	60
0100	180	167	20 + 4 × 40	9	241	400	400x270x1400	65
0105	200	185	2 x 20 + 2 x 40 + 80	10	268	400	400×270×1400	70

DESSIN TECHNIQUE DUCATI 200 -M IP30 60 ÷ 80 kVAr

DUCATI 200-M Un - Cond = 450 V IP30

 THD_{IMAX-C} % \leq 70% THD_{I} % \leq 20% Un 400 V - 50 Hz

Part n. 415.04	Qn (kVAr)	Q (400 V) (kVAr)	Puissance Batterie (kVAr)	Gradins	In (A)	In sw. (A)	LxPxH (mm)	Poids (kg)
0235	60	47	2 x 10 + 2 x 20	6	68	125	400x270x600	30
0240	70	55	10 + 3 × 20	7	80	125	400x270x600	35
0245	80	63	2 x 10 + 20 + 40	8	91	125	400x270x600	35
0250	90	71	10 + 2 x 20 + 40	9	103	250	400x270x1000	40
0255	100	79	2 x 10 +2 x 20+40	10	114	250	400x270x1000	45
0260	120	94	2 x 10 + 20 + 2 x 40	12	137	250	400x270x1200	50
0265	140	110	20 + 3 x 40	7	160	400	400x270x1200	55
0270	160	126	2 x 20 + 3 x 40	8	182	400	400x270x1200	60
0275	180	142	20 + 4 × 40	9	205	400	400x270x1400	65
0280	200	158	2 x 20 + 2 x 40 + 80	10	228	400	400x270x1400	70

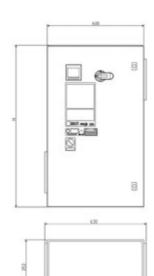
DESSIN TECHNIQUE DUCATI 200-M IP30 90 ÷ 200 kVAr

DUCATI 200-M Un - Cond = 525 V IP30

 $THD_{IMAX-C} \% \le 85\% THD_{I}\% \le 27\% Un 400 V - 50 Hz$

Part n. 415.04	Qn (kVAr)	Q (400 V) (kVAr)	Puissance Batterie (kVAr)	Gradins	In (A)	In sw. (A)	LxPxH (mm)	Poids (kg)
0335	60	34	2 x 10 + 2 x 20	6	50	125	400x270x600	30
0340	70	40	10 + 3 x 20	7	59	125	400x270x600	35
0345	80	46	2 x 10 + 20 + 40	8	67	125	400x270x600	35
0350	90	52	10 + 2 × 20 + 40	9	75	250	400x270x1000	40
0355	100	58	2 x 10 + 2 x 20 + 40	10	84	250	400x270x1000	45
0360	120	69	2 x 10 + 20 + 2 x 40	12	101	250	400x270x1200	50
0365	140	81	20 + 3 x 40	7	117	400	400x270x1200	55
0370	160	92	2 x 20 + 3 x 40	8	134	400	400x270x1200	60
0375	180	104	20 + 4 x 40	9	151	400	400x270x1400	65
0380	200	116	2 x 20 + 2 x 40 + 80	10	168	400	400x270x1400	70

DUCATI 200-M Un - Cond = 415 V IP54 $^{\text{THD}_{1\,\text{MAX-C}}}$ % \leq 50% $^{\text{THD}_{1}}$ % \leq 12% Un 400 V - 50 Hz


Part n. 415.04	Qn (kVAr)	Q (400 V) (kVAr)	Puissance Batterie (kVAr)	Gradins	In (A)	In sw. (A)	LxPxH (mm)	Poids (kg)
0011	5	4.7	0.7 + 1.4 + 2.9	7	7	40	500x250x700	39
0016	7.5	7.0	1.1 + 2.1 + 4.3	7	10	40	500x250x700	39
0021	10	9.3	1.4 + 2.9 + 5.7	7	13	40	500x250x700	39
0026	12.5	11.6	2.5 + 2 x 5	5	17	40	500x250x700	40
0031	17.5	16.3	2.5 + 5 +10	7	23	40	500x250x700	40
0036	20	18	2 x 5	4	27	63	500x250x700	41
0041	25	23	5 + 2 x 10	5	34 63 500×25		500x250x700	41
0046	35	32	5 + 10 + 20	7	47	80	500x250x700	42
0051	40	37	2 x 10 + 20	4	54	80	500x250x700	42
0056	50	46	10 + 2 x 20	5	67	80	500x250x700	43
0061	60	55	2 x 10 + 2 x 20	6	80	125	500x250x700	54
0067	70	65	10 + 3 x 20	7	94	125	500x250x700	59
0071	80	74	2 x 10 + 20 +40	8	107	125	500x250x700	59
0076	90	83	10 + 2 × 20+40	9	121	250	600x300x1000	77
0081	100	92	2 x 10 + 2 x 20+40	10	134	250	600x300x1000	82
0086	120	111	2 x 10 + 20 + 2 x 40	12	161	250	600x300x1000	93
0091	140	130	20 + 3 × 40	7	188	400	600x300x1000	98
0096	160	148	2 x 20 + 3 x 40	8	215	400	600x300x1200	109
0101	180	167	20 + 4 × 40	9	241	400	600x300x1400	114
0106	200	185	2 x 20 + 2 x 40 + 80	10	268	400	600x300x1400	119

DESSIN TECHNIQUE DUCATI 200-M IP54 5-80kVAr

DESSIN TECHNIQUE DUCATI 200-M IP54 90-200kVAr

DUCATI 200-M Un - Cond = 450 V IP54 $THD_{1 \text{ MAX-C}} \% \le 70\% \ THD_{1}\% \le 20\% \ Un \ 400 \ V - 50 \ Hz$

Part n. 415.04	Qn (kVAr)	Q (400 V) (kVAr)	Puissance Batterie (kVAr)	Gradins	In (A)	In sw. (A)	LxPxH (mm)	Poids (kg)
0211	20	15	2 x 5 + 10	4	23	63	500x250x700	41
0216	25	19	5 + 2 × 10	5	29	63	500x250x700	41
0221	35	27	5 + 10 + 20	7	40	80	500x250x700	42
0226	40	31	2 x 10 + 20	4	46	80	500x250x700	42
0231	50	39	10 + 2 x 20	5	57	80	500x250x700	43
0236	60	47	2 x 10 + 2 x 20	6	68	125	500x250x700	54
0241	70	55	10 + 3 x 20	7	80	125	500x250x700	59
0246	80	63	2 x 10 + 20 + 40	8	91	125	500x250x700	59
0251	90	71	10 + 2 x 20 + 40	9	103	250	600x300x1000	77
0256	100	79	2 x 10 + 2 x 20 + 40	10	114	250	600x300x1000	82
0261	120	94	2 x 10 + 20 + 2 x 40	12	137	250	600x300x1200	93
0266	140	110	20 + 3 x 40	7	160	400	600x300x1200	98
0271	160	126	2 x 20 + 3 x 40	8	182	400	600x300x1200	109
0276	180	142	20 + 4 × 40	9	205	400	600x300x1400	114
0281	200	158	$2 \times 20 + 2 \times 40 + 80$	10	228	400	600x300x1400	119

DUCATI 200-M Un - Cond = 525 V IP54

 $THD_{IMAX-C} \% \le 85\% THD_{I}\% \le 27\% Un 400 V - 50 Hz$

Part n. 415.04	Qn (kVAr)	Q (400 V) (kVAr)	Puissance Batterie (kVAr)	Gradins	In (A)	In sw. (A)	LxPxH (mm)	Poids (kg)
0311	20	11	2 x 5 + 10	4	17	63	500x250x700	41
0316	25	14	5 + 2 x 10	5	21	63	500x250x700	41
0321	35	20	5 + 10 + 20	7	29	80	500x250x700	42
0326	40	23	2 x 10 + 20	4	34	80	500x250x700	42
0331	50	29	10 + 2 x 20	5	42	80	500x250x700	43
0336	60	34	2 x 10 + 2 x 20	6	50	125	500x250x700	54
0341	70	40	10 + 3 x 20	7	59	125	500x250x700	59
0346	80	46	2 x 10 + 20 + 40	8	67	125	500x250x700	59
0351	90	52	10 + 2 x 20 + 40	9	75	250	500x250x1000	77
0356	100	58	2 x 10 + 2 x 20 + 40	10	84	250	500x250x1000	82
0361	120	69	2 x 10 + 20 + 2 x 40	12	101	250	500x250x1200	93
0366	140	81	20 + 3 x 40	7	117	400	500x250x1200	98
0371	160	92	2 x 20 + 3 x 40	8	134	400	500x250x1200	109
0376	180	104	20 + 4 × 40	9	151	400	500x250x1400	114
0381	200	116	2 x 20 + 2 x 40 + 80	10	168	400	500x250x1400	119

Batteries automatique

DUCATI 400-M

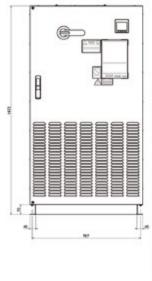
Batteries automatique de compensation d'énergie reactive

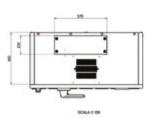
Caractéristiques techniques

- Condensateurs monophasés MONO Long Life 4IN en PPMh, pour un service continu dans des conditions très exigeantes dans des environnements riches en harmoniques. Tension nominale 415 V, 450 V, 525 V
- Régulateur de facteur de puissance série rEvolution R5 485 Radio. Connexion NFC pour l'échange de la configuration avec l'application "DUCATI Smart Energy". Auto-détection de la direction et de la position du TC, pour faciliter les opéracions de l'installation. Adéquat pour les centrales de cogénération comme PV Intégration optionnelle avec le système d'échange de données DUCnet via une connexion RS 485 ou Radio 868 MHz.
- Structure extérieure en acier vernie avec de la poudre époxydes couleur RAL 703
- Sectionneur omnipolaire, avec blocage de la porte, et courant nominal 1.45In selon la norme CEI EN
- Contacteurs conçus pour contrôler les charges capacitives, équipés d'un limiteur de courant d'appel avec alimentation 230 V 50 - 60 Hz

Caractéristiques générales

Tension nominale	400 V
Frequence	50 Hz
Tension d'isolement	690 V
Ventilation	Forcé
Usage	Indoor
Indice de protection	IP 30
Service	Continu
Temperature	-5 +40 °C
Alimentation	3F + PE
Entrée du câble	Тор
Connexion interne	FS17
Dispositifs de décharge	Sur chaque condensateur
Fusible	NH-00 GL
Normes	IEC 61439 le cas échéant IEC 61921
I _{SH}	50 kA (cconditionné par le dispositif de protection en amont)





DUCATI 400-M Un - Cond = 415 V $THD_{I \text{ MAX-C}}$ % \leq 50% THD_{I} % \leq 12% Un 400 V - 50 Hz

Part n. 415.04	Qn (kVAr)	Q (400 V) (kVAr)	Puissance Batterie (kVAr)	Gradins	In (A)	In sw. (A)	LxPxH (mm)	Poids (kg)
0510N	220	204	20 + 3 × 40 + 80	11	295	630	800x400x1470	115
0515N	240	223	2 x 20 + 40 + 2 x 80	12	322	630	800x400x1470	120
0520N	260	241	20 + 2 x 40 + 2 x 80	13	349	630	800x400x1470	125
0525N	280	260	$3 \times 40 + 2 \times 80$	7	375	630	800x400x1470	130
0527N	300	278	20 + 40 + 3 × 80	15	402	630	800x400x1470	135
0530N	320	297	2 x 40 + 3 x 80	8	429	800	800x400x1470	140
0535N	360	334	40 + 4 x 80	9	483	800	800x400x1470	145
0540N	400	371	5 x 80	5	536	800	800x400x1470	150

TDESSIN TECHNIQUE DUCATI 400-M

DUCATI 400-M Un - Cond = 450 V $THD_{I \text{ MAX-C}} \% \le 70\% \text{ THD}^{1}\% \le 20\% \text{ Un } 400 \text{ V} - 50 \text{ Hz}$

Part n. 415.04	Qn (kVAr)	Q (400 V) (kVAr)	Puissance Batterie (kVAr)	Gradins	In (A)	In sw. (A)	LxPxH (mm)	Poids (kg)
0610N	220	173	20 + 3 × 40 + 80	11	251	630	800x400x1470	115
0615N	240	189	2 x 20 + 40 +2 x 80	12	274	630	800x400x1470	120
0620N	260	205	20 + 2 x 40 + 2 x 80	13	297	630	800x400x1470	125
0625N	280	221	3 x 40 + 2 x 80	7	319	630	800x400x1470	130
0627N	300	237	20 + 40 + 3 × 80	15	342	630	800x400x1470	135
0630N	320	252	2 x 40 + 3 x 80	8	365	800	800x400x1470	140
0635N	360	284	40 + 4 x 80	9	411	800	800x400x1470	145
0640N	400	316	5 x 80	5	456	800	800x400x1470	150

DUCATI 400-M Un - Cond = 525 V $THD_{I \text{ MAX-C}} \% \le 85\% \ THD_{I}\% \le 27\% \ Un \ 400 \ V - 50 \ Hz$

Part n. 415.04	Qn (kVAr)	Q (400 V) (kVAr)	Puissance Batterie (kVAr)	Gradins	In (A)	In sw. (A)	LxPxH (mm)	Poids (kg)
0710N	220	127	20 + 3 × 40 + 80	11	184	630	800x400x1470	115
0715N	240	139	2 x 20 + 40 + 2 x 80	12	201	630	800x400x1470	120
0720N	260	150	20 + 2 x 40 + 2 x 80	13	218	630	800x400x1470	125
0725N	280	162	3 x 40 + 2 x 80	7	235	630	800x400x1470	130
0727N	300	174	20 + 40 + 3 x 80	15	251	630	800x400x1470	135
0730N	320	185	2 x 40 + 3 x 80	8	268	800	800x400x1470	140
0735N	360	209	40 + 4 x 80	9	302	800	800x400x1470	145
0740N	400	232	5 x 80	5	335	800	800x400x1470	150

DUCATI 1600-R

Batteries automatique de Compensation d'énergie reactive

Caractéristiques techniques

- Condensateurs monophasés MONO Long Life 4IN en PPMh, pour un service continu dans des conditions très exigeantes dans des environnements riches en harmoniques. Tension nominale 415 V, 450 V,
- Régulateur de facteur de puissance série rEvolution R8 avec 868 MHz
 Radio, connexion RS485 et Bluetooth.

Connexion NFC et BT pour l'échange de la configuration avec l'application "**DUCATI Smart Energy**". Auto-détection de la direction et de la position du TC, pour faciliter les opéracions de l'installation. Adéquat pour les centrales de cogénération comme PV. Intégration optionnelle avec le système d'échange de données DUCnet via une connexion RS 485 ou Radio 868 MHz.

- Structure extérieure en acier vernie avec de la poudre époxydes couleur RAL 703
- Sectionneur omnipolaire, avec blocage de la porte, et courant nominal 1.45In selon la norme CEI EN
- Contacteurs conçus pour contrôler les charges capacitives, équipés d'un limiteur de courant d'appel avec alimentation 230 V 50 - 60 Hz

Caractéristiques générales

Tension nominale	450 V - 525 V
Frequence	50 Hz
Tension d'isolement	690 V
Ventilation	Forcé
Usage	Indoor
Indice de protection	IP30 - IP54
Service	Continu
Temperature	-5 +40 °C
Alimentation	3F + PE
Entrée du câble	Par l'Haute ou Bas
Connexion interne	FS17
Dispositifs de décharge	Sur chaque condensateur
Fusible	NH-00 GL
Normes	IEC 61439 le cas échéant IEC 61921
I _{sh}	50 kA (0.5 s)

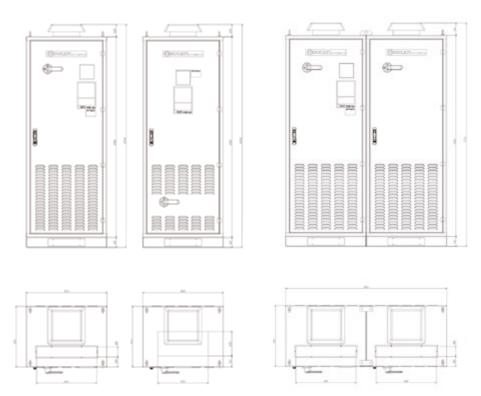
DUCATI 1600-R Un - Cond = 415 V $^{\text{THD}_{\text{I MAX-C}}}$ % \leq 50% $^{\text{THD}_{\text{I}}}$ % \leq 12% Un 400 V - 50 Hz

Qn	Q	Puissance Batterie	Gradi-	ln	In sec.	Entrée de	e câble par le hau	t	Entrée de	e câble par le bas	
(kVAr)	(400 V) (kVAr)	(kVAr)	ns	(A)	(A)	Part n. 415.04.	LxPxH (mm)	Weight (kg)	Part n. 415.04.	LxPxH (mm)	Poids (kg)
240	223	6 x 40	6	322	630	1010	800x600x2250	265	1010B	800x600x2250	265
280	260	7 x 40	7	375	630	1012	800x600x2250	270	1012B	800x600x2250	270
320	297	6 x 40 + 80	8	429	630	1015	800x600x2250	275	1015B	800x600x2250	275
360	334	5 x 40 + 2 x 80	9	483	1000	1017	800x600x2250	285	1017B	800x600x2250	295
400	371	4 x 40 + 3 x 80	10	536	1000	1020	800x600x2250	290	1020B	800x600x2250	298
440	408	3 x 40 + 4 x 80	11	590	1000	1022	800x600x2250	295	1022B	800x600x2250	300
480	445	2 x 40 + 5 x 80	12	644	1000	1025	800x600x2250	300	1025B	800x600x2250	305
520	483	3 x 40 + 5 x 80	13	697	1250	1027	800x600x2250	310	1027B	800x600x2250	310
560	520	2 x 40 + 6 x 80	14	751	1250	1030	800x600x2250	315	1030B	800x600x2250	315
600	557	3 x 40 + 6 x 80	15	805	1250	1032	800x600x2250	320	1032B	800x600x2250	320
640	594	2 x 40 + 7 x 80	16	858	1250	1035	800x600x2250	325	1035B	800x600x2250	325
680	631	3 × 40 + 7 × 80	17	912	1600	1037	800x600x2250	335	1037B	1600x600x2250	580
720	668	2 x 40 + 8 x 80	18	965	1600	1040	800x600x2250	345	1040B	1600x600x2250	582
800	743	2 x 40 + 7 x 80 + 160	20	1073	1600	1045	800x600x2250	350	1045B	1600x600x2250	585
880	817	2 x 40 + 6 x 80 + 2 x 160	22	1180	1000 + 1000	1050	1600x600x2250	580	1050B	1600x600x2250	588
960	891	8 x 80 + 2 x 160	12	1287	1000 + 1000	1055	1600x600x2250	590	1055B	1600x600x2250	590
1040	966	7 x 80 + 3 x 160	13	1395	1000 + 1250	1060	1600x600x2250	605	1060B	1600x600x2250	605
1120	1040	6 x 80 + 4 x 160	14	1502	1000 + 1250	1065	1600x600x2250	615	1065B	1600x600x2250	615
1200	1114	5 x 80 + 5 x 160	15	1609	1250 + 1250	1070	1600x600x2250	630	1070B	1600x600x2250	630
1280	1189	4 x 80 + 6 x 160	16	1716	1250 + 1250	1075	1600x600x2250	635	1075B	1600x600x2250	635
1360	1263	3 x 80 + 7 x 160	17	1824	1250 + 1600	1080	1600x600x2250	650	1080B	2400x600x2250	850
1440	1337	2 x 80 + 8 x 160	18	1931	1250 + 1600	1085	1600x600x2250	665	1085B	2400x600x2250	855
1520	1412	3 x 80 + 6 x 160 + 320	19	2038	1600 + 1600	1090	1600x600x2250	680	1090B	2400x600x2250	860
1600	1486	2 x 80 + 7 x 160 + 320	20	2145	1600 + 1600	1095	1600x600x2250	700	1095B	2400x600x2250	865

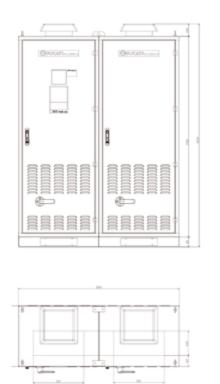
DUCATI 1600-R Un - Cond = 450 V $THD_{I \text{ MAX-C}} \% \le 70\% \ THD_{I}\% \le 20\% \ Un \ 400 \ V - 50 \ Hz$

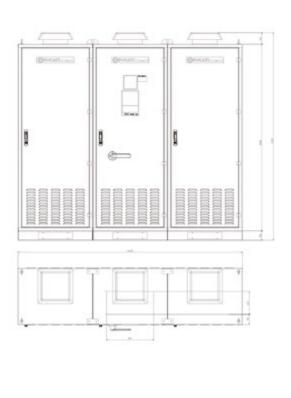
Qn	Q	Puissance Batterie	Gradi-	In	In sec.	Entrée de	e câble par le hau	t	Entrée d	e câble par le bas	
(kVAr)	(400 V) (kVAr)	(kVAr)	ns	(A)	(A)	Part n. 415.04.	LxPxH (mm)	Weight (kg)	Part n. 415.04.	LxPxH (mm)	Poids (kg)
240	189	6 x 40	6	274	630	1110	800x600x2250	265	1110B	800x600x2250	265
280	221	7 x 40	7	319	630	1112	800x600x2250	270	1112B	800x600x2250	270
320	252	6 x 40 + 80	8	365	630	1115	800x600x2250	275	1115B	800x600x2250	275
360	284	5 x 40 + 2 x 80	9	411	1000	1117	800x600x2250	285	1117B	800x600x2250	295
400	316	$4 \times 40 + 3 \times 80$	10	456	1000	1120	800x600x2250	290	1120B	800x600x2250	298
440	347	3 x 40 + 4 x 80	11	502	1000	1122	800x600x2250	295	1122B	800x600x2250	300
480	379	2 x 40 + 5 x 80	12	547	1000	1125	800x600x2250	300	1125B	800x600x2250	305
520	410	3 x 40 + 5 x 80	13	593	1250	1127	800x600x2250	310	1127B	800x600x2250	310
560	442	2 x 40 + 6 x 80	14	639	1250	1130	800x600x2250	315	1130B	800x600x2250	315
600	474	3 x 40 + 6 x 80	15	684	1250	1132	800x600x2250	320	1132B	800x600x2250	320
640	505	2 x 40 + 7 x 80	16	730	1250	1135	800x600x2250	325	1135B	800x600x2250	325
680	537	3 x 40 + 7 x 80	17	776	1600	1137	800x600x2250	335	1137B	1600x600x2250	580
720	568	2 x 40 + 8 x 80	18	821	1600	1140	800x600x2250	345	1140B	1600x600x2250	582
800	632	2 x 40+7 x 80+160	20	912	1600	1145	800x600x2250	350	1145B	1600x600x2250	585
880	695	2 x 40+ 6 x 80 + 2 x 160	22	1004	1000 + 1000	1150	1600x600x2250	580	1150B	1600x600x2250	588
960	758	8 x 80 + 2 x 160	12	1095	1000 + 1000	1155	1600x600x2250	590	1155B	1600x600x2250	590
1040	821	7 x 80 + 3 x 160	13	1186	1000 + 1250	1160	1600x600x2250	605	1160B	1600x600x2250	605
1120	884	6 x 80 + 4 x 160	14	1277	1000 + 1250	1165	1600x600x2250	615	1165B	1600x600x2250	615
1200	948	5 x 80 + 5 x 160	15	1369	1250 + 1250	1170	1600x600x2250	630	1170B	1600x600x2250	630
1280	1011	4 x 80 + 6 x 160	16	1460	1250 + 1250	1175	1600x600x2250	635	1175B	1600x600x2250	635
1360	1074	3 x 80 + 7 x 160	17	1551	1250 + 1600	1180	1600x600x2250	650	1180B	2400x600x2250	850
1440	1137	2 x 80 + 8 x 160	18	1642	1250 + 1600	1185	1600x600x2250	665	1185B	2400x600x2250	855
1520	1201	3 x 80 + 6 x 160 + 320	19	1733	1600 + 1600	1190	1600x600x2250	680	1190B	2400x600x2250	860
1600	1264	2 x 80 + 7 x 160 + 320	20	1825	1600 + 1600	1195	1600x600x2250	700	1195B	2400x600x2250	865

IP54 sur demande (même taille que le tableau précédent).


DUCATI 1600-R Un - Cond = 525 V $^{\text{THD}_{\text{I MAX-C}}}$ % \leq 85% $^{\text{THD}_{\text{I}}}$ % \leq 27% Un 400 V - 50 Hz

Qn	Q	Puissance Batterie	Gradi-	In	In sec.	Entrée de	e câble par le haut	t	Entrée de	câble par le bas	
(kVAr)	(400 V) (kVAr)	(kVAr)	ns	(A)	(A)	Part n. 415.04.	LxPxH (mm)	Weight (kg)	Part n. 415.04.	LxPxH (mm)	Poids (kg)
240	139	6 x 40	6	201	630	1210	800x600x2250	265	1210B	800x600x2250	265
280	162	7 x 40	7	235	630	1212	800x600x2250	270	1212B	800x600x2250	270
320	185	6 x 40 + 80	8	268	630	1215	800x600x2250	275	1215B	800x600x2250	275
360	209	5 x 40 + 2 x 80	9	302	1000	1217	800x600x2250	285	1217B	800x600x2250	295
400	232	$4 \times 40 + 3 \times 80$	10	335	1000	1220	800x600x2250	290	1220B	800x600x2250	298
440	255	3 x 40 + 4 x 80	11	369	1000	1222	800x600x2250	295	1222B	800x600x2250	300
480	278	2 x 40 + 5 x 80	12	402	1000	1225	800x600x2250	300	1225B	800x600x2250	305
520	301	3 x 40 + 5 x 80	13	436	1250	1227	800x600x2250	310	1227B	800x600x2250	310
560	325	2 x 40 + 6 x 80	14	469	1250	1230	800x600x2250	315	1230B	800x600x2250	315
600	348	3 x 40 + 6 x 80	15	503	1250	1232	800x600x2250	320	1232B	800x600x2250	320
640	371	2 x 40 + 7 x 80	16	536	1250	1235	800x600x2250	325	1235B	800x600x2250	325
680	394	3 × 40 + 7 × 80	17	570	1600	1237	800x600x2250	335	1237B	1600x600x2250	580
720	418	2 x 40 + 8 x 80	18	603	1600	1240	800x600x2250	345	1240B	1600x600x2250	582
800	464	2 x 40 + 7 x 80 + 160	20	670	1600	1245	800x600x2250	350	1245B	1600x600x2250	585
880	510	2 x 40 + 6 x 80 + 2 x 160	22	737	1000 + 1000	1250	1600x600x2250	580	1250B	1600x600x2250	588
960	557	8 x 80 + 2 x 160	12	804	1000 + 1000	1255	1600x600x2250	590	1255B	1600x600x2250	590
1040	603	7 x 80 + 3 x 160	13	871	1000 + 1250	1260	1600x600x2250	605	1260B	1600x600x2250	605
1120	650	6 x 80 + 4 x 160	14	938	1000 + 1250	1265	1600x600x2250	615	1265B	1600x600x2250	615
1200	696	5 x 80 + 5 x 160	15	1005	1250 + 1250	1270	1600x600x2250	630	1270B	1600x600x2250	630
1280	743	4 x 80 + 6 x 160	16	1072	1250 + 1250	1275	1600x600x2250	635	1275B	1600x600x2250	635
1360	789	3 x 80 + 7 x 160	17	1140	1250 + 1600	1280	1600×600×2250	650	1280B	2400×600×2250	850
1440	835	2 x 80 + 8 x 160	18	1207	1250 + 1600	1285	1600x600x2250	665	1285B	2400×600×2250	855
1520	882	3 x 80 + 6 x 160 + 320	19	1274	1600 + 1600	1290	1600×600×2250	680	1290B	2400×600×2250	860
1600	928	2 x 80 + 7 x 160 + 320	20	1341	1600 + 1600	1295	1600×600×2250	700	1295B	2400×600×2250	865


IP54 sur demande (même taille que le tableau précédent).

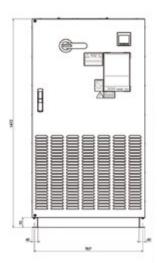

DESSIN TECHNIQUE DUCATI 1600-R

1 Port d'entrée de câble par le haut 1 Port d'entrée de câble par le bas 2 Port d'entrée de câble par le haut

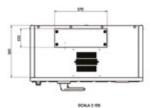
2 Port d'entrée de câble par le bas

3 Port d'entrée de câble par le bas

DUCATI 170-ML


Batteries automatique avec SAH

Caractéristiques techniques


- Condensateurs monophasés MONO Long Life 4IN en PPMh, pour un service continu dans des conditions très exigeantes dans des environnements riches en harmoniques. Tension nominale 415 V, 450 V, 525 V
- Régulateur de facteur de puissance série rEvolution R5 RS485.
 Connexion NFC pour l'échange de la configuration avec l'application "DUCATI Smart Energy". Auto-détection de la direction et de la position du TC, pour faciliter les opéracions de l'installation. Adéquat pour les centrales de cogénération comme PV. Optional integration with cloud data sharing system DUCNET, through RS485 connection or radio 868 MHz transmission
- SAH Self anti-harmonique avec frequence d'accord à 189 Hz (p= 7%)
- Structure extérieure en acier vernie avec de la poudre époxydes couleur RAL 703
- Sectionneur omnipolaire, avec blocage de la porte, et courant nominal 1.45In selon la norme CEI EN
- Contacteurs conçus pour contrôler les charges capacitives, équipés d'un limiteur de courant d'appel avec alimentation 230 V 50 - 60 Hz

DESSIN TECHNIQUE DUCATI 170-ML

Caractéristiques générales

Tension nominale	400 V
Frequence	50 Hz
Tension d'isolement	690 V
Ventilation	Forcé
Usage	Indoor
Indice de protection	IP30
Service	Continu
Temperature	-5 +40 °C
Alimentation	3PH + PE
Entrée du câble	Par l'haute
Connexion interne	FS17
Dispositifs de décharge	Sur chaque condensateur
Fusible	NH-00 GL
Normes	IEC 61439 where applicable IEC 61921
I _{SH}	50 kA (conditioned by the upstream protective device)

DUCATI 170-ML

Un - Cond = 480 V FILTRE 189 Hz(*)

THD, $\% \le 80\%(*)$ THD, $\% \le 6\%(*)$ Un 400 V - 50 Hz

Part n. 415.04.	Qn (kVAr) (400 V)	Puissance Batterie (kVAr)	Gradins	In (A)	In sw. (A)	LxPxH (mm)	Poids (kg)
2110N	25.5	3 x 8.5	3	37	160	800x400x1470	170
2115N	34	2 x 8.5 + 17	4	49	160	800x400x1470	170
2120N	42.5	$8.5 + 2 \times 17$	5	61	160	800x400x1470	175
2125N	59.5	8.5 + 17+34	7	86	160	800x400x1470	185
2130N	68	2 x 17 + 34	4	98	160	800x400x1470	185
2135N	85	17 + 2 x 34	5	123	250	800x400x1470	190
2140N	102	2 x 17 + 2 x 34	6	147	250	800x400x1470	220
2145N	119	17 + 3 × 34	7	172	250	800x400x1470	220
2150N	136	2 x 17 + 3 x 34	8	196	400	800x400x1470	240
2155N	153	17 + 4 x 34	9	221	400	800x400x1470	245
2160N	170	5 x 34	5	245	400	800x400x1470	250

Autres tensions de fonctionnement et fréquences d'accord disponibles sur demande.

DUCATI 1000-RL

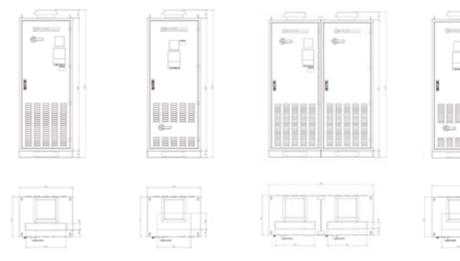
Batteries automatique avec SAH et disjoncteur

Caractéristiques techniques

- Condensateurs monophasés MONO Long Life 4IN en PPMh, pour un service continu dans des conditions très exigeantes dans des environnements riches en harmoniques. Tension nominale 415 V, 450 V, 525 V
- Régulateur de facteur de puissance série rEvolution R8 avec 868 MHz Radio, connexion RS485 et Bluetooth.
 - Connexion NFC et BT pour l'échange de la configuration avec l'application "**DUCATI Smart Energy**". Auto-détection de la direction et de la position du TC, pour faciliter les opéracions de l'installation. Adéquat pour les centrales de cogénération comme PV. Intégration optionnelle avec le système d'échange de données DUCnet via une connexion RS 485 ou Radio 868 MHz.
- SAH self-anti harmonique avec disjoncteur de frequence d'accord à 189 Hz (p= 7%)
- Structure extérieure en acier vernie avec de la poudre époxydes couleur RAL 703
- Sectionneur omnipolaire, avec blocage de la porte, et courant nominal 1.45In selon la norme CEI EN
- Contacteurs conçus pour contrôler les charges capacitives, équipés d'un limiteur de courant d'appel avec alimentation 230 V 50 - 60 Hz

Caractéristiques général

Tension nominale	400 V
Frequence	50 Hz
Tension d'isolement	690 V
Ventilation	Forcé
Usage	Indoor
Indice de protection	IP30 - IP54
Service	Continu
Temperature	-5 +40 °C
Alimentation	3F + PE
Entrée du câble	Par l'Haute ou Bas
Connexion interne	FS17
Dispositifs de décharge	Sur chaque condensateur
Fusible	NH-00 GL
Normes	IEC 61439 le cas échéant IEC 61921
I _{SH}	50 kA (0.5 s)



DUCATI 1000-RL Un - Cond = 480 V FILTRE 189 Hz(*) $THD_{_{1}}\% \le 80\%(*) \ THD_{_{v}}\% \le 6\%(*) \ Un \ 400 \ V - 50 \ Hz$

Qn	Puissance batterie	Gra-	ln (A)				Entrée de câble par le haut			e de câble par le bas	
(kVAr) (400 V)	(kVAr)	dins	(A)	(A)	Part n. 415.04.	LxPxH (mm)	Weight (kg)	Part n. 415.04.	LxPxH (mm)	Poids (kg)	
150	2 x 25 + 2 x 50	6	217	630	2010	800x600x2250	360	2010B	800x600x2250	360	
175	25 + 3 × 50	7	253	630	2015	800x600x2250	365	2015B	800x600x2250	365	
200	4 x 50	4	289	630	2020	800x600x2250	370	2020B	800x600x2250	370	
200	2 x 25 + 3 x 50	8	289	630	2023	800x600x2250	400	2023B	800x600x2250	460	
250	5 x 50	5	361	630	2025	800x600x2250	410	2025B	800x600x2250	465	
300	6 x 50	6	433	630	2030	800x600x2250	445	2030B	800x600x2250	475	
350	7 x 50	7	505	1000	2035	800x600x2250	485	2035B	800x600x2250	485	
400	8 x 50	8	577	1000	2040	800x600x2250	520	2040B	800x600x2250	520	
500	10 x 50	10	722	1000	2045	800x600x2250	595	2045B	1600x600x2250	885	
600	6 x 50 + 3 x 100	12	866	630 + 630	2050	1600x600x2250	890	2050B	1600x600x2250	890	
700	6 x 50 + 4 x 100	14	1010	630 + 1000	2055	1600x600x2250	965	2055B	1600x600x2250	965	
800	4 x 50 + 6 x 100	16	1155	1000 + 1000	2060	1600x600x2250	1045	2060B	1600×600×2250	1045	
900	2 x 50 + 8 x 100	18	1299	1000 + 1000	2065	1600x600x2250	1110	2065B	2400×600×2250	1350	
1000	2 x 50 + 7 x 100 + 200	20	1443	1000 + 1000	2070	1600x600x2250	1190	2070B	2400×600×2250	1430	

^{*} Autres tensions de fonctionnement et fréquences d'accord disponibles sur demande. IP54 sur demande (mêmes tailles que le tableau précédent).

DESSIN TECHNIQUE DUCATI 1000-RL

1 Port d'entré Càble 2 Port d'entré Cable 2 DPort d'entré Càble 1 Port d'entré Cable par le haut par le bas par le haut par le bas

DUCATI 1000-RL/HP

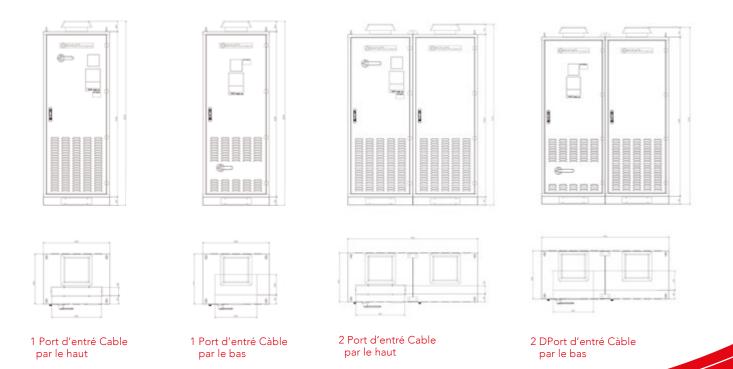
Batteries automatique avec SAH et disjoncteur

Caractéristiques techniques

- Condensateurs monophasés série GP84 en PPMh pour hautes performances, construits exclusivement avec des séries à deux éléments pour fonctionner dans des systèmes caractérisés par des courants harmoniques élevés. Tension nominale 550 V
- Régulateur de facteur de puissance série rEvolution R8 avec 868 MHz Radio, connexion RS485 et Bluetooth.
- Connexion NFC et BT pour l'échange de la configuration avec l'application "**DUCATI Smart Energy**". Auto-détection de la direction et de la position du TC, pour faciliter les opéracions de l'installation. Adéquat pour les centrales de cogénération comme PV. Intégration optionnelle avec le système d'échange de données DUCnet via une connexion RS 485 ou Radio 868 MHz
- SAH self-anti harmonique avec disjoncteur de frequence d'accord à 189 Hz (p= 7%)
- Structure extérieure en acier vernie avec de la poudre époxydes couleur RAL 703
- Sectionneur omnipolaire, avec blocage de la porte, et courant nominal 1.45In selon la norme CEI EN
- Contacteurs conçus pour contrôler les charges capacitives, équipés d'un limiteur de courant d'appel avec alimentation 230 V 50 - 60 Hz

Caractéristiques général

Tension nominale	400 V
Frequence	50 Hz
Tension d'isolement	690 V
Ventilation	Forcé
Usage	Indoor
Indice de protection	IP30 - IP54
Service	Continu
Temperature	-5 +40 °C
Alimentation	3F + PE
Entrée du câble	Par l'Haute ou Bas
Connexion interne	FS17
Dispositifs de décharge	Sur chaque condensateur
Fusible	NH-00 GL
Normes	IEC 61439 le cas échéant IEC 61921
I _{SH}	50 kA (0.5 s)



Qn (kVAr)	Puissance batterie (kVAr)	Gra-	In (A)	In sec.	Entrée de	Entrée de câble par le haut		Entrée de câble par le bas		
(400 V)	(RVAI)	ains	(A)	(A)	Part n.	LxPxH (mm)	Weight (kg)	Part n. 415.04.	LxPxH (mm)	Poids (kg)
132	2 x 22 + 2 x 44	6	191	630	2510	800x600x2250	380	2510B	800x600x2250	380
176	4 x 44	4	254	630	2515	800x600x2250	400	2515B	800x600x2250	400
264	6 x 44	6	381	630	2520	800x600x2250	480	2520B	800x600x2250	480
352	8 x 44	8	508	1000	2525	800x600x2250	600	2525B	800x600x2250	600
440	10 x 44	10	635	1000	2530	1600×600×2250	850	2530B	1600x600x2250	850
528	6 x 44 + 3 x 88	12	762	1250	2535	1600x600x2250	930	2535B	1600x600x2250	930
616	6 x 44 + 4 x 88	14	889	1600	2540	1600x600x2250	1000	2540B	1600x600x2250	1000
704	4 x 44 + 6 x 88	16	1016	1600	2545	1600×600×2250	1080	2545B	1600x600x2250	1080
792	2 x 44 + 8 x 88	18	1143	2500	2550	2400x600x2250	1400	2550B	2400x600x2250	1400
880	2 x 44 + 7 x 88 + 176	20	1270	2500	2555	2400x600x2250	1500	2555B	2400×600×2250	1500
968	2 x 44+ 6 x 88 + 2 x 176	22	1397	2500	2560	2400x600x2250	1600	2560B	2400x600x2250	1600
1056	8 x 88 + 2 x 176	12	1524	2500	2565	2400x600x2250	1700	2565B	2400×600×2250	1700

^{*} Autres tensions de fonctionnement et fréquences d'accord disponibles sur demande. IP54 sur demande (mêmes tailles que le tableau précédent).

DESSIN TECHNIQUE DUCATI 1000-RL/HP

DUCATI 1000-RL/S

Batteries automatique à commutation par contacteur statique à thystors

Caractéristiques générales

Caractéristiques techniques

- Condensateurs monophasés MONO Long Life série 4IN en PPMh, pour un service continu dans des conditions très exigeantes dans des environnements riches en harmoniques. Tension nominale 480 V
- Régulateur de facteur de puissance FCR avec système VLSI amélioré et processeur de signal numérique pour la mesure FFT. Analyse en temps réel avec cycle de service autour de 5 millisecondes RS-485
- Port de communication RS-485 et logiciel d'aide à la personnalisation intégré
- SAH self anti harmonique avec frequence à 189 Hz (p= 7%)
- Structure extérieure en acier vernie avec de la poudre époxy RAL 7035, avec structure interne de type châssis modulaire
- Interrupteur sectionneur omnipolaire, avec blocage de la porte, et courant nominal 1,45 In selon la norme CEI EN
- Module de contacteur statique à thystors SCR, adapté au pilotage des charges capacitives, inséré en dehors de la connexion triangle formée par les éléments capacitifs monophasés

Tension nominale	400 V
Frequence	50 Hz
Tension d'isolement	690 V
Ventilation	Forcé
Usage	Indoor
Indice de protection	IP30
Service	Continu
Temperature	-5 +40 °C
Alimentation	3F + PE
Entrée du câble	Par l'Haute
Connexion interne	FS17
Dispositifs de décharge	On each capacitor according to EN 60831 standard
Fusible	NH-00 GL
Normes	EN 61000-4-2 EN 50081-2 EN 50082-2 IEC 61921 -1/2

DESSIN TECHNIQUE DUCATI 1000-RL/S

DUCATI 1000-RL/S Un - Cond = 480 V FILTRE 189 Hz

 $THD_{_{1}}\% \le 80\%(*) THD_{_{V}}\% \le 6\%(*) Un 400 V - 50 Hz$

Part no. 415.14.	Q (400 V) (kVAr)	Bank Power (kVAr)	Gra- dins	In (A)	In sw. (A)	LxPxH (mm)	Poids (kg)
1360	250	2 x 25 + 4 x 50	10	361	630	800x700x2150	465
1365	300	6 x 50	6	433	630	800x700x2150	505
1370	350	7 x 50	7	505	1000	1600x700x2150	780
1372	400	8 x 50	8	577	1000	1600x700x2150	820
1375	450	9 x 50	9	650	1000	1600x700x2150	860
1380	500	10 x 50	10	722	1000	1600x700x2150	900
1385	550	11 x 50	11	794	1250	1600x700x2150	940
1390	600	12 x 50	12	866	1250	1600x700x2150	980

(*) Autres tensions de fonctionnement et fréquences d'accord disponibles sur demande.

DUCATI ACTISINE

Filtres actifs

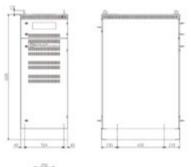
ActiSine mesure et élimine les courants harmoniques en temps réel en les compensant par des courants égaux et opposés. La compensation active est:

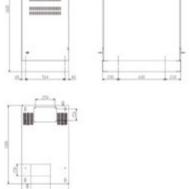
- **EFFICACE:** ses performances sont indépendantes des fonctionnalités du réseau et le dimensionnement est simple et direct
- **FIABLE:** parce que il s'adapte automatiquement et instantanément au fonctionnement des charges et ne peut être surchargé

Caractéristiques techniques

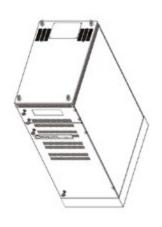
- La technologie de filtration active d'ActiSine garantit d'excellents résultats (residual
 - THD résiduel <3%) indépendamment des caractéristiques du réseau. Le courant nominal FULL peut être dédié à la compensation de courant harmonique
- ActiSine est équipé d'un régulateur DSP (Digital Signal Processor), assurant une réponse en TEMPS RÉEL (<20 ms, dans un cycle de tension secteur)
- ActiSine est dimensionné sur la base d'une simple mesure harmonique et est univoque car il dépend exclusivement des courants harmoniques
- ActiSine ne peut pas être surchargé. Si les courants harmoniques doivent dépasser la valeur pour laquelle le filtre est dimensionné, le système limitera son action à son courant nominal, en filtrant le maximum d'harmoniques possibles

- ActiSine combine une structure modulaire avec la possibilité de connecter jusqu'à 8 unités en parallèle, afin d'obtenir des puissances très élevées. Ces caractéristiques assurent une flexibilité maximale pendant l'installation et l'extensibilité du système
- Les harmoniques de 3ème ordre (et ordre 9ème, 15ème, ..., 6n + 3) générées par des charges de distorsion monophasées (PC, copieurs, ballasts électroniques) s'additionnent dans les câbles neutres, les surchargeant. ActiSine est disponible en version triphasée + neutre, capable d'annuler efficacement ces harmoniques
- Avec ses réglages par défaut, **ActiSine** agit sur tous les harmoniques jusqu'au 51ème. L'utilisateur peut également définir jusqu'à 12 harmoniques sur lesquelles concentrer l'action de filtrage. En outre, **ActiSine** peut être configuré pour utiliser une partie de son courant pour corriger le facteur de puissance de la charge et peut être utilisé avec un équipement CFP traditionnel à condensateur, à condition qu'ils soient équipés de réacteurs de désaccord
- L'installation est simple et flexible car ActiSine est connecté en parallèle avec les charges à filtrer et les TC pour la mesure de courant peuvent être montés ou descendants (contrôle en boucle fermée ou en boucle ouverte). Le démarrage est immédiat grâce aux paramètres par défaut et automatiques. L'interface utilisateur est simple et directe


Caractéristiques générales


Tension nominale	400 V /480 V
Frequence	-20 +15 %
Tension d'isolement	50 Hz/60 Hz
Ventilation	690 V
Usage	Forcé
Indice de protection	Indoor
Service	IP30
Temperature	Continu
Alimentation	-5 +40 °C
Entrée du câble	3P ou 3P + N
Connexion interne	Par l'Haute ou Bas
Dispositifs de décharge	RAL 7035
Fusible	From 2° to 51°
Normes	< 20 ms
Standards	EN 60146

DUCATI Active Filter Un = 400 V Power Range: 35 – 120 A - Harmonic orders: 2° - 51°


DESSIN TECHNIQUE DUCATI ACTISINE

Part n. 415.14	I - L1/L2/L3 (Arms)	I - neutre (Arms)	LxPxH (mm)	Poids (kg)
		3 phases – 3 wires		
2001 K	35	-	600x1000x1600	75
2002 K	60	-	600x1000x1600	120
2003 K	90	-	600x1000x1600	190
2004 K	120	-	600x1000x1600	235
		3 phases – 4 wires		
2005 K	35	105	600x1000x1600	75
2006 K	60	180	600x1000x1600	120
2007 K	90	270	600x1000x1600	190
2008 K	120	360	600x1000x1600	235

DUCATI Active Filter Un = 480 V Power Range: 30 – 100 A - Harmonic orders: 2° - 51°

Part n. 415.14	I - L1/L2/L3 (Arms)	I - neutre (Arms)	LxPxH (mm)	Poids (kg)
		3 phases – 3 wires		
2011 K	30	-	600x1000x1600	85
2012 K	50	-	600x1000x1600	130
2013 K	75	-	600x1000x1600	200
2014 K	100	-	600x1000x1600	245
		3 phases – 4 wires		
2015 K	30	90	600x1000x1600	85
2016 K	50	150	600x1000x1600	130
2017 K	75	225	600x1000x1600	200
2018 K	100	300	600x1000x1600	245

ANNEXE

Glossaire

Cosφ. Dans un système électrique, le phi (**φ**) est le déphasage entre la tension et le courant à la fréquence fondamentale de 50Hz. Le cos est un nombre sans dimension entre 0 et 1 qui représente ce décalage.

Facteur du puissance. C'est un rapport entre la puissance active et la puissance apparente, ainsi que le $\cos \phi$ a une valeur comprise entre 0 et 1. Dans un système sans harmoniques, $\cos \phi$ i et le facteur de puissance sont les mêmes; dans un système avec harmonique, le facteur de puissance est toujours inférieur au $\cos \phi$.

Tension nominale du condensateur (Un) c'est la tension nominale de le condensateur, à laquelle sa puissance nominale de sortie est donnée. C'est la valeur efficace maximale de la tension sinusoïdale alternative pour laquelle le condensateur a été conçu.

Puissance nominale du condensateur (Qn) c'est la puissance réactive fournie par le condensateur à la tension et la fréquence assignées.

Capacité nominale (Cn) C'est la valeur de la capacité qui permet la fourniture de la puissance nominale lorsque la tension et la fréquence assignées sont appliquées aux bornes.

Rated current (In) c'est la valeur efficace du courant alternatif qui circule dans le condensateur lorsque la tension et la fréquence assignées sont appliquées à la capacité nominale.

Tension d'isolement. Pour un système CFP conforme à la norme CEI 60429-1 / 2, la tension d'isolation est indicative de la tension maximale que l'ensemble du système peut supporter.

Courant de court-circuit ISH. Comme indiqué dans la CEI 61429-1, il s'agit du courant de court-circuit potentiel que l'unité peut supporter pendant une durée spécifiée. C'est une valeur déclarée par le fabricant basée sur des tests de laboratoire. Il peut être augmenté en installant des fusibles dans ce cas les données doivent indiquer la présence des fusibles.

Gradins d'une Batterie de compensation. Ce sont les unités physiques de la batterie, chacune étant contrôlée par un dispositif de commutation dédié.

Combinations C'est le nombre de configurations différentes que l'unité CFP peut faire avec les combinaisons des gradins physiques.Par exemple, une unité de 160 kvar avec les gradins 20-20-40-40-40 peut utiliser 8 combinaisons différentes: 20-40-60- 80-100-120-140-160. Plus les combinaisons peuvent être utilisées, meilleure est la souplesse d'utilisation de l'unité CFP.

THD (Taux de distorsion harmonique). Pour une onde non sinusoïdale périodique, le THD est le rapport entre la valeur efficace de toutes les composantes harmoniques et la valeur efficace de la fondamentale 50 Hz.

THDIC c'est le THD maximum qu'un condensateur peut supporter en termes de courant le traversant.

THDIR c'est le THD maximum présent dans le système sans unités CFP installée. Il est utile de définir le type de condenseur à installer.

THDV c'est la tension THD qu'une batterie de compensation d'énergie reactive avec SAH peut supporter.

Conditions de fonctionnement

Contrairement à la plupart des équipements électriques, les condensateurs de correction du facteur de puissance, chaque fois qu'ils sont alimentés, fonctionnent continuellement à pleine charge ou à des charges qui ne diffèrent de cette valeur qu'en raison des variations de tension et de fréquence. La surstress et la surchauffe raccourcissent la durée de vie du condensateur. Pour cette raison, les conditions de fonctionnement (température, tension et courant) doivent être soigneusement contrôlées afin d'obtenir des résultats optimaux en ce qui concerne la durée de vie du condensateur.

Voltage

Les condensateurs sont fabriqués conformément aux normes EN 60831-1 / 2, qui régissent la production, les essais, l'installation et l'application des condensateurs, en indiquant les surtensions maximales suivantes:

- + 10% pour 8 heures toutes les 24 heures
- + 15% pour 30 minutes toutes les 24 heures
- + 20% pendant 5 minutes
- + 30% pour 1 minute

Les surtensions supérieures à 15% ne doivent pas survenir plus de 200 fois pendant la durée de vie d'un condensateur.

Lorsque des conditions de surcharge peuvent être supposées se produire pendant le service - en présence d'une charge harmonique modérée par exemple - il est courant d'utiliser des condensateurs surdimensionnés en termes de tension.

Dans de tels cas, la puissance de sortie à la tension de fonctionnement sera réduite par rapport à la charge nominale. Il est conseillé d'évaluer la réduction survenant dans la puissance de sortie sur la base du rapport entre la tension de fonctionnement et la tension nominale.

$$Q_{resa} = Qn \times (Ue/Un)^2$$

Οù:

Ue= Tension de fonctionnement Oresa = Puissance sortiée par Ue Le tableau ci-dessous montre la puissance fournie par un condensateur de 100 kvar utilisé sur un réseau de 400 V avec une tension nominale de 415, 450 et 525 V.

U _n [V]	415	450	525
O _{resa} [kVAr]	93	79	58

Temperature

La température du condenseur pendant le fonctionnement est le paramètre qui, avec la tension, a la plus grande influence sur la durée de vie d'un condensateur.

Il est important que le condensateur soit toujours placé dans une position où l'air de refroidissement peut circuler librement et s'éloigner de la chaleur rayonnante des surfaces chaudes des autres composants.

Lorsque les condensateurs sont placés dans des armoires fermées, il est nécessaire d'avoir des évents qui permettent un échange d'air facile entre l'intérieur et l'extérieur de l'armoire. Lorsque l'indice de protection de l'armoire ne permet pas un tel échange, le positionnement des condensateurs

doit être soigneusement planifié afin de fournir les canaux nécessaires à la circulation de l'air de refroidissement. Dans ce cas, des ventilateurs appropriés devront être installés pour forcer l'air de refroidissement à travers l'armoire. En règle générale, la température de l'air de refroidissement à l'intérieur de l'armoire ne doit pas différer de plus de 5 ° C de la température de l'air extérieur.

Température de refroidissment de l'air

C'est la température de refroidissement de l'air mesurée au point le plus chaud de la batterie de condensateurs, dans les conditions de travail, à michemin entre deux condensateurs ou sur la surface de l'un d'entre eux.

Classe de température ambiante

This represents the range of cooling air temperatures in which the capacitor is designed to operate. There are 4 standard categories represented by a number and a letter or by two numbers as shown in the table.

Category		Category Ambient air temperature						
		Max	Highest mean over any period of:					
			24 h	1 Year				
-25/A	-25 +40 °C	40	30	20				
-25/B	-25 +45 °C	45	35	25				
-25/C	-25 +50 °C	50	40	30				
-25/D	-25 +55 °C	55	45	35				

The first number represents the minimum cooling air temperature at which the capacitor can be energized (- 25°C; on request -40°C). The letter or second number represents the upper limit of the temperature range and precisely, the max, value indicated in the table.

Tension résiduelle

C'est la tension qui reste aux extrémités du condensateur après le débranchement des condensateurs du réseau. Cette tension doit être arrêtée afin d'éviter des conditions de danger pour l'opérateur. Tous les condensateurs doivent être dotés de dispositifs de décharge, appelés de sécurité, qui réduisent la tension résiduelle à une valeur inférieure à 75 V au bout de 3 minutes. Il faut cependant se rappeler que les condensateurs ne peuvent pas être énergisés s'il y a une tension résiduelle supérieure à

10% à leurs extrémités. Une attention particulière doit être ensuite prêtée pour uniformiser les temps de décharge des condensateurs avec les temps d'intervention des dispositifs de commande (Régulateurs). Si les temps de retard des régulateurs sont plus courts que les temps de décharge du condensateur, on doit prévoir d'autres dispositifs de décharge pour que l'inversion se produise avec une tension résiduelle non supérieure à 10%

Courant maximum

Comme prévu par la norme EN 60831-1/2, les condensateurs sont adaptés à un fonctionnement permanent avec une valeur efficace du courant égale à 1,3 fois la valeur de courant à la tension et fréquences nominales (excluant les transitoires). En tenant compte de la tolérance de capacité, le courant maximum peut arriver à 1.5 In, valeur à laquelle on doit se référer dans le dimensionnement de la ligne de courant des dispositifs de commande et de protection. Ce facteur de surintensité peut être déterminé par l'effet combiné d'harmoniques, de surtensions et de tolérance de capacité.

Courant max de pic à l'insertion

On vérifie des surintensités transitoires d'ampleur élevée et à haute fréquence lorsque les condensateurs sont insérés dans le circuit et

spécialement lorsqu'une batterie de condensateurs est insérée en parallèle à d'autres déjà énergisées. Il peut donc être nécessaire de réduire ces surintensités transitoires à des valeurs acceptables pour le condensateur et pour le contacteur utilisé, en insérant les condensateurs à travers des dispositifs opportuns (résistances ou réacteurs) dans le circuit d'alimentation de la batterie.e).

Protection et sécurité

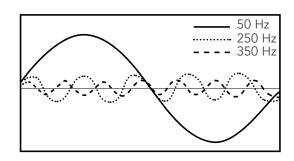
Pour une protection sûre, les éléments capacitifs qui constituent les unités sont individuellement équipés du dispositif de protection contre la surpression. Sa fonction est d'interrompre le court-circuit lorsqu'à la fin de sa vie le condensateur ne réussit plus à s'autorégénérer. Le dispositif exploite la pression qui se développe à l'intérieur, avec la détérioration du film, à cause de la surchauffe, due au court-circuit, pour interrompre les raccordements du terminal. À noter qu'un fusible externe n'est pas non plus fiable car le courant de court-circuit étant fortement limité par la métallisation, il est largement variable. Tous les condensateurs sont construits avec des matériaux compatibles avec l'environnement, conformes aux normes EN 60831-1/2.

The effect of harmonics in electrical systems

On définit harmonique une des composantes obtenues par la décomposition dans la série de Fourier d'une onde périodique. On définit aussi ordre d'une harmonique le rapport entre la fréquence d'une harmonique et la fréquence fondamentale de l'onde périodique considérée

En cas d'onde ayant un cours parfaitement sinusoïdal (comme devrait être la tension fournie par les organismes de distribution), il n'y a que l'harmonique fondamentale d'ordre 1, qui a, en Europe, une fréquence de 50 Hz.

En appliquant une tension sinusoïdale à une charge, le courant circulant résulte lui aussi sinusoïdal seulement en présence de charges ayant des « caractéristiques linéaires ».


En présence d'une charge « non linéaire », le cours du courant s'écarte d'un cas idéal et une décomposition selon Fourier de l'onde présenterait un nombre d'harmoniques d'autant plus élevé (en nombre et ampleur) que la forme d'onde est plus déformée. L'utilisation toujours plus fréquente, dans le domaine industriel, de charges non linéaires (inverseur, lampes à décharge liquides, soudeuses, alimentateurs type switching, etc.) crée des distorsions élevées dans la forme d'onde du courant circulant.

Certains types de charges comportent une distorsion « caractéristique » dans le courant absorbé. C'est le cas des convertisseurs ac/dc, pour lesquels théoriquement le courant absorbé présente seulement des harmoniques d'ordre

$$h = mp \pm 1$$

où m est un nombre entier différent de 0 (donc 1, 2, 3, 4,...) et p est le nombre d'interrupteurs statiques du pont. Par conséquent, un convertisseur avec réaction hexaphasée (p=6) génère des harmoniques caractéristiques d'ordre 5 et 7 (m=1),

11 et 13 (m=2), 17 et 19 (m=3), etc. ; alors qu'un convertisseur avec réaction dodécaphasée (p=12) génère des harmoniques caractéristiques d'ordre 11 et 13 (m=1), 23 et 25 (m=2).

Le paramètre utilisé pour déterminer le niveau de distorsion harmonique présent dans un réseau électrique est le THDI% (Total Harmonic Distorsion), défini comme:

$$TDH_{i}\% = \frac{\sqrt{\sum_{k=2}^{\infty} I_{k}^{2}}}{I_{1}}$$

où I1 est la valeur efficace de la fondamentale et lk sont les valeurs efficaces des harmoniques d'ordre k. La présence d'harmoniques de courant dans l'installation est donc le signe d'une distorsion (par rapport à la sinusoïde) de la forme d'onde du courant même. Cela entraîne l'augmentation des pertes par effet Joule et effet peau dans les câbles, l'augmentation des pertes à cause d'hystérésis et de courants parasites dans le fer des transformateurs et des moteurs. De plus, à cause des impédances équivalentes des câbles, le cours de la tension dans le réseau peut également être influencé. En insérant des condensateurs de mise en phase dans le réseau, on crée une condition de résonance parallèle entre la capacité équivalente des condensateurs et l'inductance équivalente de l'installation (s'approchant d'habitude de l'inductance équivalente du transformateur) en correspondance avec la fréquence fr. En indiquant avec S_c, la puissance de court-circuit de l'installation (exprimée en kVA) dans le point d'installation des condensateurs, avec Q la puissance réactive installée (exprimée en kvar) et avec f1 la fréquence du réseau, on trouve la fréquence de résonance parallèle fr.

$$\int_{r} = \int_{1} \cdot \sqrt{\frac{Scc}{Q}}$$

La puissance de court-circuit S_{cc} de l'installation peut s'approcher de la puissance de court-circuit du transformateur MT/BT qui, indiquée avec $S_{cct'}$ est donnée par:

$$S_{cc} = \frac{A}{V_{cc}\%} \cdot 100$$

où A est la puissance nominale du transformateur (exprimée en kVA) et Vcc% est la tension de court-circuit pourcentage du transformateur. Les harmoniques sous tension, présentes dans l'installation, de fréquence proche de la fréquence de résonance parallèle fr sont exaltées. C'est pourquoi, une tension très élevée se crée aux extrémités des condensateurs, provoquant une forte accélération du vieillissement du diélectrique et donc la fin de vie rapide du condensateur. Pour la solution de mise en phase à adopter dans ces cas, nous vous renvoyons au chapitre suivant.

Risque d'incendie et d'explotion

Tous les condensateurs sont faits principalement de polypropylène. Ils peuvent s'endommager et s'enflammer pour des causes internes (mauvais fonctionnement du système de sécurité, éventuellement), ou surcharges externes (sur tensions , sur courants, hautes températures, ect)

Pour les utiliser correctement on doit s'assurer , par les justes précautions , qu'ils ne causent aucun dommage aux composants voisins.

Correction du facteur de puissance des transformateurs MT / BT

Il est toujours judicieux d'assurer une correction du facteur de puissance pour les transformateurs MT / BT, car même lorsqu'ils fonctionnent sans charge (par exemple pendant la nuit), ils absorbent la puissance réactive, qui doit être compensée. La puissance exacte du condensateur requise peut être calculée en utilisant la formule ci-dessous:

$$Q = Io\% \cdot Pn/100$$

I = courant sans charge (spécifié par le fabricant du transformateur) Pn = puissance nominale du transformateur. Sinon, si les données requises ne sont pas disponibles, vous pouvez vous référer au tableau ci-dessous, qui différencie les types de transformateurs avec NORMAL.

Power transformer	Oil transformer	Resin transformer kVAr
10	1	1.5
20	2	1.7
50	4	2
75	5	2.5
100	5	2.5
160	7	4
200	7.5	5
250	8	7.5
315	10	7.5
400	12.5	8
500	15	10
630	17.5	12.5
800	20	15
1000	25	17.5
1250	30	20
1600	35	22
2000	40	25
2500	50	35
3150	60	50

L'une des charges les plus courantes est le moteur asynchrone triphasé. Le tableau ci-dessous montre la correction du facteur de puissance dans le cas des moteurs à cage d'écureuil. Un supplément de 5% est recommandé pour les moteurs avec armatures enroulées.

Le tableau indique les puissances approximatives des batteries de condensateurs à installer en fonction de la puissance du moteur.

Reactive power to be installed - Three-phase motor: 230/400 V Rated power Rotation speed (rpm) (kW) (Cv) 7.5 12.5 12.5

Section minimale de câble pour la puissance de l'équipement supply

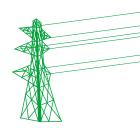
Main voltage 400 V 50 Hz 25											
Main voltage 400 V – 50 Hz – 3F											
Qn kVAr	In A	Minimum cablecross- section suggested for phase ¹ (mm ²)									
5	7	2.5									
10	14	4									
15	22	6									
20	29	10									
30	43	16									
40	58	16									
50	72	35									
100	144	70									
200	288	185 opp./or2x70									
300	433	2x150									
400	576	2x240									
500	722	3x185									
600	864	3x240									
700	1010	4x240									
800	1154	4x240									
900	1300	6x185									
1000	1443	6x240									

(1) = Values reported for single-core PVC cables in free air laid not separated on horizontal shelves. For other types of cables and/or installation refer to IEC 60364-5, CEI 64-8 and table UNEL 35024/1.

K FACTOR

Existin	ıg	Target	cosφ														
tgφ	cosφ	0.85	0.86	0.87	0.88	0.89	0.90	0.91	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.99	1.00
3.18	0.30	2.560	2.586	2.613	2.640	2.667	2.695	2.724	2.754	2.785	2.817	2.851	2.888	2.929	2.977	3.037	3.180
3.07 2.96	0.31	2.447 2.341	2.474 2.367	2.500	2.527 2.421	2.555	2.583 2.476	2.611 2.505	2.641 2.535	2.672 2.565	2.704 2.598	2.738 2.632	2.775	2.816	2.864 2.758	2.924 2.818	3.067 2.961
2.86	0.33	2.241	2.267	2.294	2.321	2.348	2.376	2.405	2.435	2.465	2.498	2.532	2.569	2.610	2.657	2.718	2.861
2.77	0.34	2.146	2.173	2.199	2.226	2.254	2.282	2.310	2.340	2.371	2.403	2.437	2.474	2.515	2.563	2.623	2.766
2.68	0.35	2.057	2.083	2.110	2.137	2.164	2.192	2.221	2.250	2.281	2.313	2.348	2.385	2.426	2.473	2.534	2.676
2.59 2.51	0.36	1.972	1.998 1.918	2.025	2.052	2.079	2.107	2.136	2.166	2.196	2.229	2.263	2.300	2.341	2.388	2.449	2.592
2.43	0.38	1.814	1.841	1.867	1.894	1.922	1.950	1.979	2.008	2.039	2.071	2.105	2.143	2.184	2.231	2.292	2.434
2.36	0.39	1.741	1.768	1.794	1.821	1.849	1.877	1.905	1.935	1.966	1.998	2.032	2.069	2.110	2.158	2.219	2.361
2.29	0.40	1.672	1.698	1.725	1.752	1.779	1.807	1.836	1.865	1.896	1.928	1.963	2.000	2.041	2.088	2.149	2.291
2.22	0.41	1.605 1.541	1.631	1.658 1.594	1.685	1.712	1.740 1.676	1.769 1.705	1.799 1.735	1.829	1.862 1.798	1.896 1.832	1.933	1.974	2.022 1.958	2.082	2.225
2.10	0.43	1.480	1.506	1.533	1.560	1.587	1.615	1.644	1.674	1.704	1.737	1.771	1.808	1.849	1.897	1.957	2.100
2.04	0.44	1.421	1.448	1.474	1.501	1.529	1.557	1.585	1.615	1.646	1.678	1.712	1.749	1.790	1.838	1.898	2.041
1.98	0.45	1.365	1.391	1.418	1.445	1.472	1.500	1.529	1.559	1.589	1.622	1.656	1.693	1.734	1.781	1.842	1.985
1.93 1.88	0.46	1.311	1.337	1.364	1.391	1.418	1.446	1.475 1.422	1.504 1.452	1.535	1.567 1.515	1.602 1.549	1.639	1.680 1.627	1.727 1.675	1.788 1.736	1.930 1.878
1.83	0.48	1.208	1.234	1.261	1.288	1.315	1.343	1.372	1.402	1.432	1.465	1.499	1.536	1.577	1.625	1.685	1.828
1.78	0.49	1.159	1.186	1.212	1.239	1.267	1.295	1.323	1.353	1.384	1.416	1.450	1.487	1.528	1.576	1.637	1.779
1.73	0.50	1.112	1.139	1.165	1.192	1.220	1.248	1.276	1.306	1.337	1.369	1.403	1.440	1.481	1.529 1.484	1.590	1.732
1.69 1.64	0.51 0.52	1.067	1.093	1.120	1.147	1.174	1.202 1.158	1.231	1.261	1.291 1.247	1.324	1.358	1.395	1.436	1.484	1.544	1.687
1.60	0.53	0.980	1.007	1.033	1.060	1.088	1.116	1.144	1.174	1.205	1.237	1.271	1.308	1.349	1.397	1.458	1.600
1.56	0.54	0.939	0.965	0.992	1.019	1.046	1.074	1.103	1.133	1.163	1.196	1.230	1.267	1.308	1.356	1.416	1.559
1.52 1.48	0.55 0.56	0.899	0.925	0.952	0.979	1.006 0.967	1.034 0.995	1.063	1.092	1.123	1.156	1.190 1.151	1.227 1.188	1.268	1.315 1.276	1.376 1.337	1.518 1.479
1.44	0.57	0.822	0.848	0.913	0.902	0.929	0.957	0.986	1.033	1.046	1.079	1.113	1.150	1.191	1.238	1.299	1.441
1.40	0.58	0.785	0.811	0.838	0.865	0.892	0.920	0.949	0.979	1.009	1.042	1.076	1.113	1.154	1.201	1.262	1.405
1.37	0.59	0.749	0.775	0.802	0.829	0.856	0.884	0.913	0.942	0.973	1.006	1.040	1.077	1.118	1.165	1.226	1.368
1.33 1.30	0.60	0.714	0.740	0.767	0.794	0.821	0.849	0.878	0.907	0.938	0.970	1.005 0.970	1.042	1.083	1.130	1.191	1.333
1.27	0.62	0.646	0.672	0.699	0.726	0.753	0.781	0.810	0.839	0.870	0.903	0.937	0.974	1.015	1.062	1.123	1.265
1.23	0.63	0.613	0.639	0.666	0.693	0.720	0.748	0.777	0.807	0.837	0.870	0.904	0.941	0.982	1.030	1.090	1.233
1.20	0.64	0.581	0.607	0.634	0.661	0.688	0.716	0.745	0.775	0.805	0.838	0.872	0.909	0.950	0.998	1.058	1.201
1.17 1.14	0.65	0.549	0.576	0.602	0.629	0.657	0.685	0.714	0.743	0.774	0.806	0.840	0.877	0.919	0.966	1.027 0.996	1.169
1.11	0.67	0.488	0.515	0.541	0.568	0.596	0.624	0.652	0.682	0.713	0.745	0.779	0.816	0.857	0.905	0.966	1.108
1.08	0.68	0.459	0.485	0.512	0.539	0.566	0.594	0.623	0.652	0.683	0.715	0.750	0.787	0.828	0.875	0.936	1.078
1.05	0.69	0.429	0.456	0.482	0.509	0.537	0.565	0.593	0.623	0.654	0.686	0.720	0.757	0.798	0.846	0.907	1.049
0.99	0.71	0.372	0.398	0.425	0.452	0.480	0.508	0.536	0.566	0.597	0.629	0.663	0.700	0.741	0.789	0.849	0.992
0.96	0.72	0.344	0.370	0.397	0.424	0.452	0.480	0.508	0.538	0.569	0.601	0.635	0.672	0.713	0.761	0.821	0.964
0.94	0.73 0.74	0.316 0.289	0.343	0.370	0.396	0.424 0.397	0.452 0.425	0.481 0.453	0.510 0.483	0.541 0.514	0.573	0.608	0.645	0.686	0.733 0.706	0.794 0.766	0.936
0.88	0.75	0.262	0.289	0.342	0.342	0.377	0.423	0.433	0.456	0.487	0.519	0.553	0.570	0.631	0.679	0.739	0.882
0.86	0.76	0.235	0.262	0.288	0.315	0.343	0.371	0.400	0.429	0.460	0.492	0.526	0.563	0.605	0.652	0.713	0.855
0.83	0.77	0.209	0.235	0.262	0.289	0.316	0.344	0.373	0.403	0.433	0.466	0.500	0.537	0.578	0.626	0.686	0.829
0.80 0.78	0.78 0.79	0.183	0.209	0.236	0.263	0.290	0.318	0.347	0.376	0.407 0.381	0.439	0.474	0.511	0.552 0.525	0.599 0.573	0.660	0.802 0.776
0.75	0.80	0.130	0.157	0.183	0.210	0.238	0.266	0.294	0.324	0.355	0.387	0.421	0.458	0.499	0.547	0.608	0.750
0.72	0.81	0.104	0.131	0.157	0.184	0.212	0.240	0.268	0.298	0.329	0.361	0.395	0.432	0.473	0.521	0.581	0.724
0.70	0.82	0.078	0.105	0.131	0.158	0.186	0.214	0.242	0.272	0.303	0.335	0.369	0.406	0.447	0.495	0.556	0.698
0.67	0.83	0.052	0.079	0.105	0.132	0.160	0.188	0.216	0.246	0.277	0.309	0.343	0.380	0.421 0.395	0.469	0.530	0.672
0.62	0.85	0.020	0.053	0.079	0.080	0.134	0.162	0.190	0.220	0.225	0.257	0.291	0.328	0.345	0.443	0.503	0.620
0.59	0.86			0.027	0.054	0.081	0.109	0.138	0.167	0.198	0.230	0.265	0.302	0.343	0.390	0.451	0.593
0.57	0.87				0.027	0.054	0.082	0.111	0.141	0.172	0.204	0.238	0.275	0.316	0.364	0.424	0.567
0.54	0.88					0.027	0.055	0.084	0.114	0.145	0.177	0.211	0.248	0.289	0.337	0.397	0.540
0.51	0.89						0.028	0.057	0.086	0.117	0.149	0.184	0.221	0.262	0.309	0.370 0.342	0.512 0.484
0.46	0.91								0.030	0.060	0.093	0.127	0.164	0.205	0.253	0.313	0.456
0.43	0.92									0.031	0.063	0.097	0.134	0.175	0.223	0.284	0.426
0.40	0.93										0.032	0.067	0.104	0.145	0.192	0.253	0.395
0.33	0.95											0.034	0.071	0.112	0.126	0.220	0.329
													0.037				
0.29	0.96													0.041	0.089	0.149	0.292
0.25	0.97														0.048	0.108	0.251
0.20	0.98															0.061	0.203
0.14	0.99																0.142

Gamme de produits



Instruments et systèmes pour les mesures électriques

Condensateurs d'électronique de puissance

Condensateurs MT et Systèmes de compensation d'énergie reactive HT et filtres

Condensateurs moteurs

DUCATI energia s.p.a.

Via M.E.Lepido,182 40132 Bologna, Italy

\(+39 051-6411511

+39 051-402040

☑ info@DUCATlenergia.com

www ducatienergia it

