MOSFET - N-Channel, POWERTRENCH ${ }^{\circledR}$

100 V, 32 A, 36 m Ω

FDB3682, FDP3682

Features

- $\mathrm{R}_{\mathrm{DS}(\text { on })}=32 \mathrm{~m} \Omega$ (Typ.) $@ \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=32 \mathrm{~A}$
- $\mathrm{Q}_{\mathrm{G}(\mathrm{tot})}=18.5 \mathrm{nC}$ (Typ.) @ $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$
- Low Miller Charge
- Low Qrr Body Diode
- UIS Capability (Single Pulse and Repetitive Pulse)
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

Applications

- Consumer Appliances
- Synchronous Rectification
- Battery Protection Circuit
- Motor Drives and Uninterruptible Power Supplies
- Micro Solar Inverter

MOSFET MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Symbol		Parameter	$\begin{array}{\|c\|} \hline \text { FDB3682 / } \\ \text { FDP3682 } \end{array}$	Unit
$V_{\text {DSS }}$	Drain to Source Voltage		100	V
V_{GS}	Gate to Source Voltage		± 20	V
I_{D}	Drain Current	$\begin{aligned} & \text { Continuous } \\ & \left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}\right) \end{aligned}$	32	A
		Continuous $\left(T_{C}=100^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}\right)$	23	A
		$\begin{aligned} & \text { Continuous }\left(T_{a m b}=25^{\circ} \mathrm{C},\right. \\ & \left.\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\theta J \mathrm{JA}}=43^{\circ} \mathrm{C} / \mathrm{W}\right) \end{aligned}$	6	A
		Pulsed	Figure 4	A
$\mathrm{E}_{\text {AS }}$	Single Pulse Avalanche Energy (Note 1)		55	mJ
P_{D}	Power Dissipation		95	W
	Derate above $25^{\circ} \mathrm{C}$		0.63	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {STG }}$	Operating and Storage Temperature		-55 to 175	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Starting $T_{J}=25^{\circ} \mathrm{C}, \mathrm{L}=0.27 \mathrm{mH}, \mathrm{I}_{\mathrm{AS}}=20 \mathrm{~A}$.

D2PAK-3
(TO-263, 3-LEAD) CASE 418AJ

TO-220-3LD CASE 340AT

MARKING DIAGRAM

SCHEMATIC

ORDERING INFORMATION

See detailed ordering and shipping information on page 13 of this data sheet.

FDB3682, FDP3682

THERMAL CHARACTERISTICS

Symbol	Parameter	Ratings	Unit
$R_{\theta J C}$	Thermal Resistance, Junction to Case TO-220, TO-263, Max.	1.58	
$R_{\theta J A}$	Thermal Resistance, Junction to Ambient TO-220, TO-263 (Note 2), Max.	62	
$R_{\theta J A}$	Thermal Resistance, Junction to Ambient TO-263, $1 \mathrm{in}^{2}$ copper pad area, Max.	${ }^{\circ} \mathrm{W}$	
${ }^{\circ} \mathrm{C} / \mathrm{W}$			

2. Pulse Width $=100 \mathrm{~s}$

ELECTRICAL CHARACTERISTICS $\left(T_{C}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
OFF CHARACTERISTICS						
$B_{\text {VDSS }}$	Drain to Source Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	100			V
$\mathrm{I}_{\text {DSS }}$	Zero Gate Voltage Drain Current	$\mathrm{V}_{\mathrm{DS}}=80 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$			1	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{DS}}=80 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=150^{\circ} \mathrm{C}$			250	
$\mathrm{I}_{\text {GSS }}$	Gate to Source Leakage Current	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}$			± 100	nA

ON CHARACTERISTICS

V_{GS} (TH)	Gate to Source Threshold Voltage	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	2		4	V
$\mathrm{R}_{\mathrm{DS} \text { (ON) }}$	Drain to Source On Resistance	$\mathrm{I}_{\mathrm{D}}=32 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$		0.032	0.036	Ω
		$\mathrm{I}_{\mathrm{D}}=16 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=6 \mathrm{~V}$		0.040	0.060	
		$\mathrm{I}_{\mathrm{D}}=32 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=175^{\circ} \mathrm{C}$		0.080	0.090	

DYNAMIC CHARACTERISTICS

$\mathrm{C}_{\text {ISS }}$	Input Capacitance	$\mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	1250		pF
Coss	Output Capacitance		190		pF
$\mathrm{C}_{\text {RSS }}$	Reverse Transfer Capacitance		45		pF
$\mathrm{Q}_{\mathrm{g} \text { (TOT) }}$	Total Gate Charge at 10 V	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=32 \mathrm{~A}, \mathrm{I}_{\mathrm{g}}=1.0 \mathrm{~mA} \end{aligned}$	18.5	28	nC
$\mathrm{Q}_{\mathrm{g}}(\mathrm{TH})$	Threshold Gate Charge	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} \text { to } 2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=32 \mathrm{~A}, \mathrm{I}_{\mathrm{g}}=1.0 \mathrm{~mA} \end{aligned}$	2.4	3.6	nC
Q_{gs}	Gate to Source Gate Charge	$V_{D D}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=32 \mathrm{~A}, \mathrm{I}_{\mathrm{g}}=1.0 \mathrm{~mA}$	6.5		nC
$Q_{\text {gs2 }}$	Gate Charge Threshold to Plateau		4.1		nC
Q_{gd}	Gate to Drain "Miller" Charge		4.6		nC

RESISTIVE SWITCHING CHARACTERISTICS ($\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$)

t_{ON}	Turn-On Time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=32 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{GS}}=16 \Omega \end{aligned}$		83	ns
$\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$	Turn-On Delay Time		9		ns
t_{r}	Rise Time		46		ns
$\mathrm{t}_{\mathrm{d} \text { (OFF) }}$	Turn-Off Delay Time		26		ns
t_{f}	Fall Time		32		ns
toff	Turn-Off Time			87	ns

DRAIN-SOURCE DIODE CHARACTERISTICS

$V_{S D}$	Source to Drain Diode Voltage	$\mathrm{I}_{\text {SD }}=32 \mathrm{~A}$	1.25	V
		$\mathrm{I}_{\mathrm{SD}}=16 \mathrm{~A}$	1.0	V
t_{rr}	Reverse Recovery Time	$\mathrm{I}_{\text {SD }}=32 \mathrm{~A}, \mathrm{dl}_{\text {SD }} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{S}$	55	ns
$Q_{R R}$	Reverse Recovered Charge	$\mathrm{I}_{\text {SD }}=32 \mathrm{~A}, \mathrm{dl}_{\text {SD }} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$	90	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Figure 1. Normalized Power Dissipation vs. Case Temperature

Figure 2. Maximum Continuous Drain Current vs. Case Temperature

Figure 3. Normalized Maximum Transient Thermal Impedance

Figure 4. Peak Current Capability

FDB3682, FDP3682

TYPICAL CHARACTERISTICS
($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted) (continued)

Figure 5. Forward Bias Safe Operating Area

Figure 7. Transfer Characteristics

Figure 9. Drain to Source On Resistance
vs. Drain Current

t_{AV}, TIME IN AVALANCHE (ms)
NOTE: Refer to onsemi Application Notes AN-7514 and AN-7515
Figure 6. Unclamped Inductive Switching Capability

Figure 8. Saturation Characteristics

Figure 10. Normalized Drain to Source On Resistance vs. Junction Temperature

TYPICAL CHARACTERISTICS

($T_{J}=25^{\circ} \mathrm{C}$ unless otherwise noted) (continued)

Figure 11. Normalized Gate Threshold Voltage vs. Junction Temperature

Figure 13. Capacitance vs. Drain to Source Voltage

Figure 12. Normalized Drain to Source Breakdown Voltage vs. Junction Temperature

Figure 14. Gate Charge Waveforms for Constant Gate Currents

FDB3682, FDP3682

TEST CIRCUITS AND WAVEFORMS

Figure 15. Unclamped Energy Test Circuit

Figure 17. Gate Charge Test Circuit

Figure 19. Switching Time Test Circuit

Figure 16. Unclamped Energy Waveforms

Figure 18. Gate Charge Waveforms

Figure 20. Switching Time Waveforms

THERMAL RESISTANCE VS. MOUNTING PAD AREA

The maximum rated junction temperature, T_{JM}, and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, P_{DM}, in an application. Therefore the application's ambient temperature, $\mathrm{T}_{\mathrm{A}}\left({ }^{\circ} \mathrm{C}\right)$, and thermal resistance $\mathrm{R}_{\theta \mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ must be reviewed to ensure that T_{JM} is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part.

$$
\begin{equation*}
P_{D M}=\frac{\left(T_{J M}-T_{A}\right)}{R_{\theta J A}} \tag{eq.1}
\end{equation*}
$$

In using surface mount devices such as the TO-263 package, the environment in which it is applied will have a significant influence on the part's current and maximum power dissipation ratings. Precise determination of P_{DM} is complex and influenced by many factors:

1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board.
2. The number of copper layers and the thickness of the board.
3. The use of external heat sinks.
4. The use of thermal vias.
5. Air flow and board orientation.
6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in.
onsemi provides thermal information to assist the designer's preliminary application evaluation. Figure 21 defines the $\mathrm{R}_{\theta \mathrm{JA}}$ for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1 oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state
junction temperature or power dissipation. Pulse applications can be evaluated using the onsemi device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve.
Thermal resistances corresponding to other copper areas can be obtained from Figure 21 or by calculation using Equation 2 or 3 . Equation 2 is used for copper area defined in inches square and equation 3 is for area in centimeter square. The area, in square inches or square centimeters is the top copper area including the gate and source pads.

$$
\begin{equation*}
\mathrm{R}_{\text {ӨJA }}=26.51+\frac{19.84}{0.262+\text { Area }} \tag{eq.2}
\end{equation*}
$$

Area in in ${ }^{2}$.

$$
\begin{equation*}
R_{\text {OJA }}=26.51+\frac{128}{1.69+\text { Area }} \tag{eq.3}
\end{equation*}
$$

Area in cm^{2}.

Figure 21. Thermal Resistance vs. Mounting Pad Area

FDB3682, FDP3682

PSPICE ELECTRICAL MODEL

.SUBCKT FDB3682 213 ; rev May 2002
Ca $1284 \mathrm{e}-10$
Cb 1514 5.5e-10
Cin 68 1.22e-9
Dbody 75 DbodyMOD
Dbreak 511 DbreakMOD
Dplcap 105 DplcapMOD
Ebreak 1171718108
Eds 148581
Egs 138681
Esg 610681
Evthres 6211981
Evtemp 20618221
It 8171
Lgate 19 5.96e-9
Ldrain 25 1.0e-9
Lsource $373.19 \mathrm{e}-9$
RLgate 1959.6
RLdrain 2510
RLsource 3731.9
Mmed 16688 MmedMOD
Mstro 16688 MstroMOD
Mweak 162188 MweakMOD
Rbreak 1718 RbreakMOD 1
Rdrain 5016 RdrainMOD 10.5e-3
Rgate 9201.86
RSLC1 551 RSLCMOD 1.0e-6
RSLC2 550 1.0e3
Rsource 87 RsourceMOD 11.9e-3
Rvthres 228 RvthresMOD 1
Rvtemp 1819 RvtempMOD 1
S1a 612138 S1AMOD
S1b 1312138 S1BMOD
S2a 6151413 S2AMOD
S2b 13151413 S2BMOD
Vbat 2219 DC 1

```
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*70),2.5))}
.MODEL DbodyMOD D (IS=2.4E-12 RS=4.4e-3 TRS1=2.0e-3 TRS2=4.5e-7
+ CJO=9e-10 M=0.57 TT=2.9e-8 XTI=4.0)
.MODEL DbreakMOD D (RS=0.6 TRS1=1.4e-3 TRS2=-5.0e-5)
.MODEL DplcapMOD D (CJO=2.7e-10 IS=1.0e-30 N=10 M=0.56)
.MODEL MstroMOD NMOS (VTO=4.16 KP=32 IS=1e-30 N=10 TOX=1 L=1u W=1u)
.MODEL MmedMOD NMOS (VTO=3.48 KP=2.7 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=1.86)
.MODEL MweakMOD NMOS (VTO=2.97 KP=0.04 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=18.6 RS=0.1)
```

.MODEL RbreakMOD RES (TC1=1.05e-3 TC2=-1.1e-8)
.MODEL RdrainMOD RES (TC1=1.6e-2 TC2=4e-5)
.MODEL RSLCMOD RES (TC1=3.0e-3 TC2=2.9e-6)
.MODEL RsourceMOD RES (TC1=1e-3 TC2=1e-6)
.MODEL RvthresMOD RES (TC1 $=-4.1 \mathrm{e}-3$ TC2 $=-1.4 \mathrm{e}-5$)
.MODEL RvtempMOD RES (TC1=-3.5e-3 TC2=1.3e-6)
.MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-5.0 VOFF=-2.0)
.MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-2.0 VOFF=-5.0)
.MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-0.4 VOFF=0.3)
.MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=0.3 VOFF=-0.4)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET
Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.

Figure 22.

SABER ELECTRICAL MODEL

REV May 2002
template FDB3682 n2,n1,n3
electrical n2,n1,n3
\{
var i iscl
dp.. model dbodymod $=($ isl $=2.4 \mathrm{e}-12, \mathrm{rs}=4.4 \mathrm{e}-3, \operatorname{trs} 1=2.0 \mathrm{e}-3, \operatorname{trs} 2=4.5 \mathrm{e}-7, \mathrm{cjo}=9 \mathrm{e}-10, \mathrm{~m}=0.57, \mathrm{tt}=2.9 \mathrm{e}-8, \mathrm{xti}=4.0)$
dp..model dbreakmod $=(\mathrm{rs}=0.6$, trs $1=1.4 \mathrm{e}-3$, trs $2=-5 \mathrm{e}-5)$
dp.. model dplcapmod $=(\operatorname{cjo}=2.7 \mathrm{e}-10$, isl $=10 \mathrm{e}-30, \mathrm{nl}=10, \mathrm{~m}=0.56)$
$\mathrm{m} .$. model mstrongmod $=\left(\right.$ type $=_\mathrm{n}, \mathrm{vto}=4.16, \mathrm{kp}=32$, is $=1 \mathrm{e}-30$, tox $\left.=1\right)$
$\mathrm{m} .$. model $\mathrm{mmedmod}=\left(\right.$ type $=_\mathrm{n}, \mathrm{vto}=3.48, \mathrm{kp}=2.7$, $\mathrm{is}=1 \mathrm{e}-30$, tox $\left.=1\right)$
m..model mweakmod $=\left(\right.$ type $=_$n, vto $=2.97, \mathrm{kp}=0.04$, is $=1 \mathrm{e}-30$, tox $\left.=1, \mathrm{rs}=0.1\right)$
sw_vcsp..model s1amod $=($ ron=1e -5, roff $=0.1$, von $=-5$, voff $=-2)$
sw_vcsp..model s1bmod $=($ ron=1e-5,roff=0.1,von=-2,voff=-5)
sw_vcsp..model s2amod $=($ ron $=1 \mathrm{e}-5$, roff $=0.1$, von $=-0.4$, voff $=0.3)$
sw_vcsp..model s2bmod $=($ ron $=1 \mathrm{e}-5$, roff $=0.1$, von $=0.3$, voff $=-0.4)$
c.ca $\mathrm{n} 12 \mathrm{n} 8=4 \mathrm{e}-10$
c.cb $\mathrm{n} 15 \mathrm{n} 14=5.5 \mathrm{e}-10$
c.cin $\mathrm{n} 6 \mathrm{n} 8=1.22 \mathrm{e}-9$
dp.dbody n7 n5 = model=dbodymod
dp.dbreak n5 n11 = model=dbreakmod
dp.dplcap n10 n5 = model=dplcapmod
spe.ebreak n11 n7 n17n18 = 108
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 $=1$
spe.esg n6 n10 n6 n8 = 1
spe.evthres n6 n21 n19 n8 = 1
spe.evtemp n20 n6 n18 n22 $=1$
i.it n8 n17 = 1
1.lgate $\mathrm{n} 1 \mathrm{n} 9=5.96 \mathrm{e}-9$
l.ldrain n2 n5 $=1.0 \mathrm{e}-9$
1.1source n3 n7 $=3.19 \mathrm{e}-9$
res.rlgate $\mathrm{n} 1 \mathrm{n} 9=59.6$
res.rldrain $\mathrm{n} 2 \mathrm{n} 5=10$
res.rlsource $n 3 n 7=31.9$
m.mmed n16 n6 n8 n8 = model=mmedmod, $\mathrm{l}=1 \mathrm{u}, \mathrm{w}=1 \mathrm{u}$
m.mstrong n16 n6 n8 n8 = model=mstrongmod, $\mathrm{l}=1 \mathrm{u}, \mathrm{w}=1 \mathrm{u}$
m.mweak n16n21n8n8= model=mweakmod, $\mathrm{l}=1 \mathrm{u}, \mathrm{w}=1 \mathrm{u}$
res.rbreak n17 n18 $=1$, tc1 $=1.05 \mathrm{e}-3$, tc $2=-1.1 \mathrm{e}-8$
res.rdrain n50 n16 $=10.5 \mathrm{e}-3$, tc $1=1.6 \mathrm{e}-2$, tc $2=4 \mathrm{e}-5$
res.rgate $\mathrm{n} 9 \mathrm{n} 20=1.86$
res.rslc1 n5 n51 $=1.0 \mathrm{e}-6$, tc $1=3.0 \mathrm{e}-3$, tc $2=2.9 \mathrm{e}-6$
res.rslc2 n5 n50 $=1.0 \mathrm{e} 3$
res.rsource $\mathrm{n} 8 \mathrm{n} 7=11.9 \mathrm{e}-3$, tc $1=1 \mathrm{e}-3, \mathrm{tc} 2=1 \mathrm{e}-6$
res.rvthres $\mathrm{n} 22 \mathrm{n} 8=1$, tc $1=-4.1 \mathrm{e}-3$,tc2 $=-1.4 \mathrm{e}-5$
res.rvtemp n18 n19 $=1$, tc1 $=-3.5 \mathrm{e}-3$,tc2 $=1.3 \mathrm{e}-6$
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod

FDB3682, FDP3682

```
v.vbat n22 n19 = dc=1
equations {
i (n51->n50) +=iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/70))** 2.5))
}
}
```


Figure 23.

SPICE THERMAL MODEL

REV 20 May 2002
FDB3682_JC TH TL
CTHERM1 TH 6 1.6e-3
CTHERM2 65 4.5e-3
CTHERM3 54 5.0e-3
CTHERM4 43 8.0e-3
CTHERM5 32 8.2e-3
CTHERM6 2 TL 4.7e-2
RTHERM1 TH 6 3.3e-2
RTHERM2 65 7.9e-2
RTHERM3 54 9.5e-2
RTHERM4 43 1.4e-1
RTHERM5 $322.9 \mathrm{e}-1$
RTHERM6 2 TL 6.7e-1

SABER THERMAL MODEL

SABER thermal model FDB3682
template thermal_model th tl thermal_c th, tl \{ ctherm.ctherm1 th $6=1.6 \mathrm{e}-3$ ctherm.ctherm2 $65=4.5 \mathrm{e}-3$ ctherm.ctherm3 $54=5.0 \mathrm{e}-3$ ctherm.ctherm4 $43=8.0 \mathrm{e}-3$ ctherm.ctherm5 $32=8.2 \mathrm{e}-3$ ctherm.ctherm6 $2 \mathrm{tl}=4.7 \mathrm{e}-2$
rtherm.rtherm1 th $6=3.3 \mathrm{e}-2$
rtherm.rtherm $265=7.9 \mathrm{e}-2$
rtherm.rtherm3 $54=9.5 \mathrm{e}-2$ rtherm.rtherm4 $43=1.4 \mathrm{e}-1$ rtherm.rtherm5 $32=2.9 \mathrm{e}-1$ rtherm.rtherm6 $2 \mathrm{tl}=6.7 \mathrm{e}-1$ \}

Figure 24.

FDB3682, FDP3682

PACKAGE MARKING AND ORDERING INFORMATION

Device	Device Marking	Package Type	Shipping †
FDB3682	FDB3682	D2PAK-3 (TO-263) (Pb-Free)	$800 /$ Tape \& Reel
FDP3682	FDP3682	TO-220-3LD (Pb-Free)	$800 /$ Tube

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Scale 1:1

TO-220-3LD
CASE 340AT
ISSUE A

SUPPLIER "A" PACKAGE SHAPE

DATE 03 OCT 2017

NOTES:

A) REFERENCE JEDEC, TO-220, VARIATION AB
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONS COMMON TO ALL PACKAGE SUPPLIERS EXCEPT WHERE NOTED [].
D) LOCATION OF MOLDED FEATURE MAY VARY (LOWER LEFT CORNER, LOWER CENTER AND CENTER OF THE PACKAGE)
E DOES NOT COMPLY JEDEC STANDARD VALUE.
F) "A1" DIMENSIONS AS BELOW:

SINGLE GAUGE $=0.51-0.61$
DUAL GAUGE $=1.10-1.45$
G PRESENCE IS SUPPLIER DEPENDENT
H) SUPPLIER DEPENDENT MOLD LOCKING HOLES IN HEATSINK.

DOCUMENT NUMBER:	98AON13818G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TO-220-3LD	PAGE 1 OF 1	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.

D²PAK-3 (TO-263, 3-LEAD)
 CASE 418AJ
 ISSUE F

notes

1. Dimensinaing and tdlerancing per ASME Y14.5M, 2009.
2. contraliing dimensinn inches
3. CHAMFER DPTIINAL.
4. DIMENSIONS D AND E DO NDT INCLUDE MDLD FLASH MILD FLASH SHALL NDT EXCEED 0.005 PER SIDE. these dimensians are measured at the dutermast EXTREMES aF THE PLASTIC BZDY AT DATUM H.
5. THERMAL PAD CONTIUR IS OPTIONAL WITHIN DIMENSIDNS E, L1, D1, AND E1.
6. IPTIONAL MILD FEATURE.
7. © , © ... םPTIONAL CINSTRUCTIIN FEATURE CALL DUTS.

DIM	INCHES		MILLIMETERS	
	MIN.	MAX.	MIN.	MAX.
A	0.160	0.190	4.06	4.83
A1	0.000	0.010	0.00	0.25
b	0.020	0.039	0.51	0.99
c	0.012	0.029	0.30	0.74
c2	0.045	0.065	1.14	1.65
D	0.330	0.380	8.38	9.65
D1	0.260	---	6.60	---
E	0.380	0.420	9.65	10.67
E1	0.245	---	6.22	---
e	0.100 BSC		2.54 BSC	
H	0.575	0.625	14.60	15.88
L	0.070	0.110	1.78	2.79
L1	---	0.066	---	1.68
L2	---	0.070	---	1.78
L3	0.010 BSC		0.25 BSC	
M	0°	8°	0°	8°

DETAIL C
TIP LEADFRRM
ROTATED $90^{\circ} \mathrm{CW}$

VIEW A-A

VIEW A-A

DATE 11 MAR 2021

DPTIDNAL CDNSTRUCTIDNS
GENERIC MARKING DIAGRAMS*

IC

Standard

Rectifier

SSG

XXXXXX = Specific Device Code
A = Assembly Location

WL = Wafer Lot
Y = Year
WW = Work Week
W = Week Code (SSG)
M = Month Code (SSG)
$\mathrm{G} \quad=$ Pb-Free Package
AKA = Polarity Indicator
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, " G " or microdot " \quad ", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98AON56370E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | D22 PAK-3 (TO-263, 3-LEAD) | PAGE 1 OF 1 |

[^0]onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

[^0]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

