MOS FET Relays -352C/F

MOS FET Relay Series with 350-V Load Voltage Including Models with 2 Outputs.

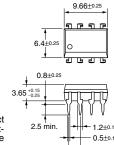
- Upgraded G3VM-W Series.
- · Continuous load current of 120 mA.
- Dielectric strength of 2,500 Vrms between I/O.
- RoHS Compliant.

■ Application Examples

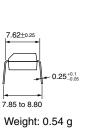
- Measurement devices
- Security systems
- Amusement machines

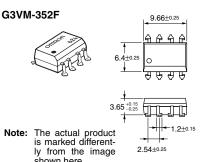
Note: The actual product is marked differently from the image shown

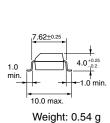
■ List of Models


Contact form	Terminals	Load voltage (peak value)	Model	Number per stick	Number per tape
DPST-NO	PCB terminals	350 VAC	G3VM-352C	50	
	Surface-mounting		G3VM-352F		
	terminals		G3VM-352F(TR)		1,500

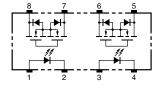
■ Dimensions

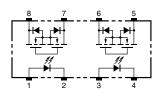

Note: All units are in millimeters unless otherwise indicated.


Note: The actual product is marked differently from the image shown here.



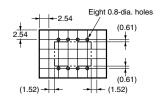
1 2+0.15 0.5+0.1 - 2.54±0.25


shown here

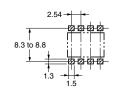


■ Terminal Arrangement/Internal Connections (Top View)

G3VM-352C



G3VM-352F

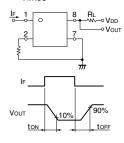

■ PCB Dimensions (Bottom View)

G3VM-352C

■ Actual Mounting Pad Dimensions (Recommended Value, Top View)

G3VM-352F

■ Absolute Maximum Ratings (Ta = 25°C)

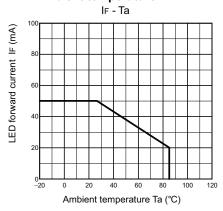

ltem		Symbol	Rating	Unit	Measurement conditions
Input	LED forward current	I _F	50	mA	
	Repetitive peak LED forward current	I _{FP}	1	Α	100 μs pulses, 100 pps
	LED forward current reduction rate	Δ I _F /°C	-0.5	mA/°C	Ta ≥ 25°C
	LED reverse voltage	V_R	5	V	
	Connection temperature	T _j	125	°C	
Output	Load voltage (AC peak/DC)	V_{OFF}	350	V	
	Continuous load current	Io	120	mA	
	ON current reduction rate	∆ I _{ON} /°C	-1.2	mA/°C	Ta ≥ 25°C
	Connection temperature	T_j	125	°C	
	ic strength between input and See note 1.)	V _{I-O}	2,500	V_{rms}	AC for 1 min
Operating temperature		T _a	-40 to +85	°C	With no icing or condensation
Storage temperature		T_{stg}	-55 to +125	°C	With no icing or condensation
Soldering temperature (10 s)			260	°C	10 s

Note: 1. The dielectric strength between the input and output was checked by applying voltage between all pins as a group on the LED side and all pins as a group on the light-receiving side.

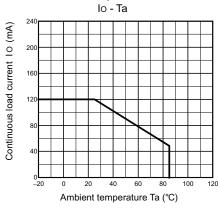
■ Electrical Characteristics (Ta = 25°C)

	Item	Symbol	Mini- mum	Typical	Maxi- mum	Unit	Measurement conditions
Input	LED forward voltage	V _F	1.0	1.15	1.3	V	I _F = 10 mA
	Reverse current	I _R			10	μΑ	V _R = 5 V
	Capacity between terminals	C _T		30		pF	V = 0, f = 1 MHz
	Trigger LED forward current	I _{FT}		1	3	mA	I _O = 120 mA
Output	Maximum resistance with output ON	R _{on}		25	35	Ω	$I_F = 5 \text{ mA},$ $I_O = 120 \text{ mA}, t < 1 \text{ s}$
				35	50	Ω	I _F = 5 mA, I _O = 120 mA
	Current leakage when the relay is open	I _{LEAK}		0.0015	1.0	μΑ	V _{OFF} = 350 V
	Capacity between terminals	C _{OFF}		30		pF	V = 0, f = 1MHz,
Capacity between I/O terminals		C _{I-O}		0.8		pF	f = 1 MHz, V _s = 0 V
Insulation resistance		R _{I-O}	1,000			ΜΩ	V_{I-O} = 500 VDC, $R_{oH} \le 60\%$
Turn-ON time		t _{ON}		0.3	1.0	ms	$I_F = 5 \text{ mA}, R_L = 200 \Omega,$
Turn-OFF time		t _{OFF}		0.1	1.0	ms	$V_{DD} = 20 \text{ V (See note 2.)}$

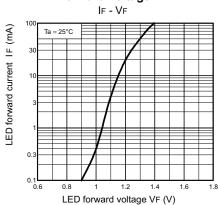
Note: 2. Turn-ON and Turn-OFF Times

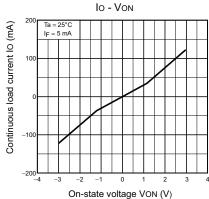

■ Recommended Operating Conditions

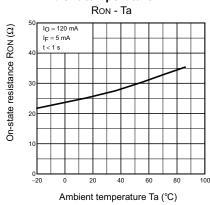
Use the G3VM under the following conditions so that the Relay will operate properly.

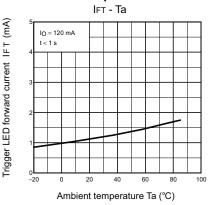

Item	Symbol	Minimum	Typical	Maximum	Unit
Load voltage (AC peak/DC)	V _{DD}			280	V
Operating LED forward current	I _F	5	7.5	25	mA
Continuous load current (AC peak/DC)	Io			100	mA
Operating temperature	T _a	- 20		65	°C

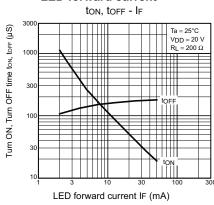
■ Engineering Data

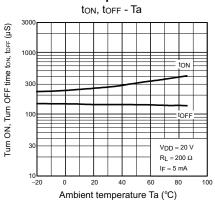

LED forward current vs. Ambient temperature

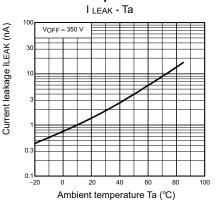

Continuous load current vs. Ambient temperature


LED forward current vs. LED forward voltage


Continuous load current vs. On-state voltage


On-state resistance vs. Ambient temperature


Trigger LED forward current vs. Ambient temperature


Turn ON, Turn OFF time vs. LED forward current

Turn ON, Turn OFF time vs. Ambient temperature

Current leakage vs. Ambient temperature

All sales are subject to Omron Electronic Components LLC standard terms and conditions of sale, which can be found at http://www.components.omron.com/components/web/webfiles.nsf/sales_terms.html

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.

OMRON

OMRON ELECTRONIC COMPONENTS LLC 55 E. Commerce Drive, Suite B Schaumburg, IL 60173

847-882-2288

Cat. No. X302-E-1

12/10

OMRON ON-LINE

Global - http://www.omron.com USA - http://www.components.omron.com

Specifications subject to change without notice Printed in USA