TRIDONIC

LED Driver

Linear fixed output

Driver LC 112W 250-350mA flexC Ip ADV
advanced series non-SELV

Product description

- Built-in constant current LED Driver
- For luminaires of protection class I and protection class II
- Temperature protection as per EN 61347-2-13 C5e
- Adjustable output current between 250 and 350 mA
- Max. output power 112 W
- Up to 94 \% efficiency
- Nominal life-time up to $100,000 \mathrm{~h}$
- 5-year guarantee

Housing properties

- Low-profile metal casing with white cover
- Type of protection IP20

Interfaces

- Terminal blocks: 45° push terminals

Functions

- Overtemperature protection
- Overload protection
- Short-circuit protection
- No-load protection
- Burst protection voltage 1 kV
- Surge protection voltage $1 \mathrm{kV}(\mathrm{L}$ to N$)$
- Surge protection voltage 2 kV (L/N to earth)

Typical applications

- For linear/area lighting in office applications

\square
Standards, page 4
Wiring diagrams and installation examples, page 4

IP20 $\sqrt{10}$ EA[© © (
Driver LC 112W 250-350mA flexC Ip ADV
advanced series non-SELV

Rated supply voltage	220-240 V
AC voltage range	198-264 V
Max. input current (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	0.57 A
Leakage current (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	< $450 \mu \mathrm{~A}$
Mains frequency	$50 / 60 \mathrm{~Hz}$
Overvoltage protection	$320 \mathrm{~V} \mathrm{AC}$,
Max. input power	121 W
Typ. power consumption (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	119 W
Min. output power	35 W
Max. output power	112 W
Typ. efficiency (at $230 \mathrm{~V} / 50 \mathrm{~Hz} /$ full load) ${ }^{(1)}$	94%
$\lambda\left(\right.$ at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load) ${ }^{(1)}$	0.95
Output current tolerance ${ }^{(2)}$	± 7.5 \%
Max. output current peak ${ }^{\text {® }}$	soutput current + 10%
Max. output voltage	330 V
THD (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	< 20 \%
Output LF current ripple ($<120 \mathrm{~Hz}$)	$\pm 5 \%$
Starting time (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	$\leq 0.5 \mathrm{~s}$
Turn off time (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	$\leq 0.5 \mathrm{~s}$
Hold on time at power failure (output)	0 s
Ambient temperature ta (at life-time 100,000 h)	$40^{\circ} \mathrm{C}$
Storage temperature ts	$-40 \ldots+80^{\circ} \mathrm{C}$
Life-time	up to $100,000 \mathrm{~h}$
Dimensions L \times W $\times H$	$360 \times 30 \times 21 \mathrm{~mm}$
Hole spacing D	348 mm

Ordering data				
Type	Article number	Packaging, carton	Packaging, pallet	Weight per pc.
LC 112W 250-350mA flexC Ip ADV	$\mathbf{2 8 0 0 2 4 6 9}$	$50 \mathrm{pc}(\mathrm{s})$.	$650 \mathrm{pc}(\mathrm{s})$.	0.221 kg

Specific technical data

Type	Output current ${ }^{(2)}$	Min. forward voltage	d Max. forward voltage	Max. output power	Typ. power consumption (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	Typ. current consumption (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	Max. casing temperature \dagger	Ambient temperature ta max.	I-out select	Resistor ${ }^{(4)}$
LC 112W 250-350mA flexC Ip ADV	250 mA	143 V	320 V	80 W	85.0 W	380 mA	$75^{\circ} \mathrm{C}$	$-20 . . .+50^{\circ} \mathrm{C}$	0-2	ADV Type A
	275 mA	143 V	320 V	88 W	93.5 W	420 mA	$75^{\circ} \mathrm{C}$	$-20 \ldots+50^{\circ} \mathrm{C}$	0-2	ADV Type B
	300 mA	143 V	320 V	96 W	103.0 W	470 mA	$75^{\circ} \mathrm{C}$	$-20 . . .+50^{\circ} \mathrm{C}$	0-1	ADV Type A
	325 mA	143 V	320 V	104 W	111.0 W	500 mA	$75^{\circ} \mathrm{C}$	$-20 . . .+50^{\circ} \mathrm{C}$	0-2	ADV Type C
	350 mA	143 V	320 V	112 W	119.0 W	540 mA	$75^{\circ} \mathrm{C}$	$-20 . . .+50^{\circ} \mathrm{C}$	open	-

[^0]
Product description

- Ready-for-use resistor to set output current value
- Compatible with LED Driver serie LC flexC ADV; not compatible with I-SELECT (generation 1) and I-SELECT 2 (generation 2)
- Resistor is base insulated
- When using your own resistors, make sure the resistor must be insulated
- Resistor power 0.25 W
- Current tolerance $\pm 2 \%$ additional to output current tolerance
- Hot plug of the resistor is not permitted
- For detailed current setting see table "Specific technical data" of the respective LED Driver and chapter 3.8 Current setting

Ordering data							
Type	Article number	Colour of X area	Colour of Y area	Marking	Resistor value	Packaging bag	Weight per pc.
ADV Plug Type A YL	$\mathbf{2 8 0 0 1 7 7 1}$	Yellow	Yellow	A	0.0Ω	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
ADV Plug Type B YL	$\mathbf{2 8 0 0 1 7 7 2}$	Yellow	Black	B	$3.16 \mathrm{k} \Omega$	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
ADV Plug Type C YL	$\mathbf{2 8 0 0 1 7 7 3}$	Yellow	Purple	C	$28.7 \mathrm{k} \Omega$	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg

1. Standards

EN 55015
EN 61000-3-2
EN 61000-3-3
EN 61347-1
EN 61347-2-13
EN 61547
EN 62384

2. Thermal details and life-time

2.1 Expected life-time

Expected life-time

Type	ta			
LC 112W 250-350mA flexC Ip ADV	$50^{\circ} \mathrm{C}$	$\mathbf{6 0}{ }^{\circ} \mathrm{C}$		
	tc	$65^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$	\times
	Life-time	$100,000 \mathrm{~h}$	$50,000 \mathrm{~h}$	\times

The LED Driver is designed for a life-time stated above under reference conditions and with a failure probability of less than 10%.

3. Installation / wiring

3.1 Circuit diagram

3.2 Wiring type and cross section

The wiring can be stranded wires with ferrules or rigid wires with a cross section of $0.5-1.5 \mathrm{~mm}^{2}$.
Strip $8.5-9.5 \mathrm{~mm}$ of insulation from the cables to ensure perfect operation of the push-wire terminals.

3.3 Release of the wiring

Press down the "push button" and remove the cable from front.

3.4 Installation instructions

The LED module and all contact points within the wiring must be sufficiently insulated against 3 kV surge voltage.
Air and creepage distance must be maintained.

3.5 Wiring guidelines

- All connections must be kept as short as possible to ensure good EMI behaviour.
- Mains leads should be kept apart from LED Driver and other leads (ideally $5-10 \mathrm{~cm}$ distance)
- Max. length of output wires is 2 m .
- Incorrect wiring can damage LED modules.
- To avoid the damage of the Driver, the wiring must be protected against short circuits to earth (sharp edged metal parts, metal cable clips, louver, etc.).
- The current selection has to be installed in the accordance to the requirement of low voltage installation.

3.6 Replace LED module

1. Mains off
2. Remove LED module
3. Wait for 20 seconds
4. Connect LED module again

Hot plug-in or output switching of LEDs is not permitted and may cause a very high current to the LEDs.

3.7 Earth connection

The earth connection is conducted as protection earth (PE). The LED Driver can be earthed via metal housing. If the LED Driver will be earthed, protection earth (PE) has to be used. There is no earth connection required for the functionality of the LED Driver. Earth connection is recommended to improve following
behaviour.

- Electromagnetic interferences (EMI)
- Transmission of mains transients to the LED output

In general it is recommended to earth the LED Driver if the LED module is mounted on earthed luminaire parts respectively heat sinks and thereby representing a high capacity against earth.

For Class I application, protection earth need to connected with the metal housing (bottom part).

For Class II application, protection earth is no need to be connected, below 2 scenarios should be considered:

- If the LED Driver housing is screw on a metal part inside the luminaires, both LED Driver and LED module must be insulated.
- If the LED Driver housing is screw on a plastic part inside the luminaires, the LED module need to be insulated.

LED Driver

Linear fixed output

3.8 Current setting

$\mathbf{2 5 0} \mathbf{~ m A : ~ T e r m i n a l ~} 0$ and 2 connected with 0Ω wire (max. 6 cm length) or resistor ADV Plug Type A BR (article number: 28001771)

275 mA: Terminal 0 and 2 connected with resistor ADV Plug Type B BR (article number: 28001772)

300 mA : Terminal 0 and 1 connected with 0Ω wire (max. 6 cm length) or resistor ADV Plug Type A BR (article number: 28001771)

325 mA: Terminal 0 and 2 connected with resistor ADV Plug Type C BR (article number: 28001773)

350 mA : All terminals open

3.9 Mounting of device

Max. torque for fixing: $0.5 \mathrm{Nm} / \mathrm{M} 4$

4. Electrical values

Test at $230 \vee 50 \mathrm{~Hz}$.

4.1 Efficiency vs load

4.2 Power factor vs load

4.3 Input power vs load

LED Driver

Linear fixed output

4.4 Input current vs load

4.5 THD vs load

	250 mA
- - -	275 mA
- - - - - -	300 mA
----	325 mA
	350 mA

4.6 Maximum loading of automatic circuit breakers in relation to inrush current

Automatic circuit breaker type	C 10	C 13	C 16	C 20	B 10	B 13	B 16	B20	Inrush current
Installation \varnothing	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	Imax
LC 112W 250-350mA flexC Ip ADV	11	15	20	25	7	9	12	15	51.5 A

This are max. values calculated out of inrush current! Please consider not to exceed the maximum rated continuous current of the circuit breaker. Calculation uses typical values from ABB series S200 as a reference.
Actual values may differ due to used circuit breaker types and installation environment.

4.7 Harmonic distortion in the mains supply (at $230 \mathrm{~V} / 50 \mathrm{~Hz}$ and full load)

in \%

	THD	3.	5.	7.	9.	11.
LC 112W 250-350mA flexC Ip ADV	<18	<15	<5	<4	<3	<2

5. Functions

5.1 Overtemperature protection

The LED Driver will reduce the LED output current or it works in a pulsed light output mode if the temperature reaches a certain degree.

5.2 Short-circuit behaviour

In case of a short circuit on the output side (LED) the LED Driver switches into hic-cup mode. After elimination of the short-circuit fault the LED Driver will recover automatically.

5.3 No-load operation

The LED Driver works in burst working mode to provide a constant output voltage regulation which allows the application to be able to work safely when LED string opens due to a failure.

5.4 Overload protection

If the output voltage range is exceeded the LED Driver will protect itself and LED may flicker. After elimination of the overload, the nominal operation is restored automatically.

6. Miscellaneous

6.1 Insulation and electric strength testing of luminaires

Electronic devices can be damaged by high voltage. This has to be considered during the routine testing of the luminaires in production.

According to IEC 60598-1 Annex Q (informative only!) or ENEC 303-Annex A, each luminaire should be submitted to an insulation test with 500 V dc for 1 second. This test voltage should be connected between the interconnected phase and neutral terminals and the earth terminal.
The insulation resistance must be at least $2 \mathrm{M} \Omega$.

As an alternative, IEC 60598-1 Annex Q describes a test of the electrical strength with 1500 V AC (or $1.414 \times 1500 \mathrm{~V}$ dC). To avoid damage to the electronic devices this test must not be conducted.

6.2 Conditions of use and storage

Humidity:
5% up to max. 85%, not condensed (max. 56 days/year at 85%)

Storage temperature: $-40^{\circ} \mathrm{C}$ up to max. $+80^{\circ} \mathrm{C}$

The devices have to be within the specified temperature range (ta) before they can be operated.

6.3 Additional information

Additional technical information at www.tridonic.com \rightarrow Technical Data

Guarantee conditions at www.tridonic.com \rightarrow Services

Life-time declarations are informative and represent no warranty claim. No warranty if device was opened.

[^0]: (1) Test result at 350 mA .
 ${ }^{2}$ Output current is mean value.
 (3) Test result at $25^{\circ} \mathrm{C}$.
 ${ }^{(4)}$ Type A is a short circuit plug (0 Ω)

